Nondestructive Evaluation & Radar Imaging using Terahertz Signals

D. Amal Mirando
Wright State University - Main Campus, mirando.2@wright.edu

Michael D. Higgins
Wright State University - Main Campus, higgins.68@wright.edu

Sonya Sokhey
Wright State University - Main Campus, sokhey.3@wright.edu

Matthew Larson
Wright State University - Main Campus, larson.50@wright.edu

Douglas T. Petkie
Wright State University - Main Campus, doug.petkie@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/urop_celebration

Part of the [Arts and Humanities Commons](http://corescholar.libraries.wright.edu/urop_celebration), [Engineering Commons](http://corescholar.libraries.wright.edu/urop_celebration), [Life Sciences Commons](http://corescholar.libraries.wright.edu/urop_celebration), [Medicine and Health Sciences Commons](http://corescholar.libraries.wright.edu/urop_celebration), [Physical Sciences and Mathematics Commons](http://corescholar.libraries.wright.edu/urop_celebration), and the [Social and Behavioral Sciences Commons](http://corescholar.libraries.wright.edu/urop_celebration)

Repository Citation

This Presentation is brought to you for free and open access by the Student Research at CORE Scholar. It has been accepted for inclusion in Celebration of Research, Scholarship, and Creative Activities by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Nondestructive imaging is a method of examining a material without direct contact that additionally does not alter the properties of the material. The terahertz imaging system currently in development uses the principle of interferometry (a Michelson Interferometer) such that frequency modulated terahertz signals are split and directed to the object under study and a reference mirror; then the detector will acquire the intensity of the combined reflected signals that contains information about the objects in the path of the beam.

Goals
- To measure object distances with high precision.
- Determine small separations between several objects.
- Create 3D imaging of samples to reveal structural properties.

Theory

Michelson interferometer
- A single wave splits into two at the beam splitter.
- Two waves travel different distances and interfere at detector.
- Constructive or destructive interference occur based on the path difference.

Frequency Modulated Continuous Wave (FMCW)
- FMCW is a radar system capable of determining distances of objects along with speed measurements.
- A continuous signal of a known frequency varies linearly in frequency over a fixed period of time by a modulating signal.
- Frequency difference between the received and the transmitted signal increases with distance which provides a method of determining distances.
- Distance is measured based on the range bin of the signal.

$$\text{Range Bin (Resolution)} = \frac{\text{speed of light}}{2 \times \text{Bandwidth}}$$

Experimental Validation:
- Object distance = 24 cm
- Experimentally measured distance= 21.9 cm (± 3.1 cm)

Current Imaging system
- Current system is capable of performing 2 dimensional imaging of samples, but not 3D images.
- The imaging platform consists of two automated tracks that allow the plate to move in the x-y plane.
- While the terahertz signal bombards the plate, the plate moves in the x-y plane so reflection information about the entire plate can be recorded.

Current and Future Work

3D Imaging Systems
- Current work is being done to develop two different 3-D imaging systems, one that uses a mirror and another that uses x-y linear stages. Each one could be coupled to the interferometer that provides distance measurements. In combination, they act as a 3-D imaging system.
- This work involves updating the LabVIEW code used to control the mirror or two linear stages. The original LabVIEW program was created to run a two-dimensional raster imaging systems and the FMCW distance/depth dimension needs to be incorporated, which is very data intensive.
- In additional to implementing the x-y (mirror and linear stages) data collection strategies, increasing the bandwidth by a factor of 10 to ~ 12 GHz will allow the range bin resolution to be ~ 6 mm.

Movable Mirror and Linear Stages Options
- In Figure 7 is a gimbal mounted mirror that is able to tilt in the y-direction, and yaw in the x-direction. In this case, the scanning mirror will allow the object to remain stationary and the 2D (x-y) aspects of the 3D image to be created by directing the focused radiation to different positions on the object. The motion of the mirror is controlled by a Newmark controller and a corresponding LabVIEW program to facilitate a raster scanning motion.
- Another method is to move the object by implementing two Anaheim Automation Linear Stages, as shown in Figure 8. In this case, the optics are static and the object is raster scanned using the two linear stages.