12-1990

Sodium Pump and Leaks in Cultured Vascular Endothelial Cells

Norma C. Adragna
Wright State University - Main Campus, norma.adragna@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/ptox

Part of the Chemicals and Drugs Commons

Repository Citation

This Conference Proceeding is brought to you for free and open access by the Pharmacology and Toxicology at CORE Scholar. It has been accepted for inclusion in Pharmacology and Toxicology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
103. Presence of an Inward Background Current Sensitive to Sodium in the Isolated Rabbit Sinoatrial Node Cell N. HAGIWARA,* H. IRISAWA,* H. KASANUKI,* and S. HOSODA,* The Heart Institute, Tokyo Women's Medical College, Tokyo, Japan (Sponsor: W. Giles, University of Calgary)

Deactivation of K⁺ conductance in the presence of an inward background current has been considered as one of the mechanisms of the pacemaker depolarization in the mammalian sinoatrial node cells. The inward background current has been assumed to exist in the simulation study as the necessary inward current for the spontaneous rhythm. The background inward current, however, has not been investigated experimentally. Using the whole-cell patch clamp mode, we measured the time-independent inward background current sensitive to Na⁺ (IbNa) in the pacemaker cell. Patch pipette contained 150 mM Cs aspartate and the external fluid contained 2 mM Ni, 2 mM Ba, 2 mM Cs, and 10 μM ouabain to block all possible time-dependent ionic currents as well as Na/K pump and Na/Ca exchange current. IbNa was obtained by subtracting the I-V curves obtained in Na-free Tris solution from that obtained in 150 mM Na solution. The background current sensitive to Na had a slope conductance of 0.4 ± 0.2 nS and a current density of 0.6 ± 0.2 pA/pF in 14 different cells. That IbNa was insensitive to TTX thus excluded the possibility of the noninactivating fast Na current. IbNa was permeable to Li, Na, K, Cs, and Rb nonselectively, although the conductances vary in the order of Li < Na < K < Cs < Rb. Since the current is inward at the entire phase of the diastolic depolarization, the contribution of IbNa to the pacemaker potential could play an essential role for the decaying K hypothesis of the pacemaker mechanism.

104. Sodium Pump and Leaks in Cultured Vascular Endothelial Cells NORMA C. ADRAGNA, Department of Pharmacology & Toxicology, Wright State University School of Medicine, Dayton, Ohio

To understand the generation and maintenance of Na and K gradients in cultured vascular endothelial cells (CVEC), net active (Na/K pump) and passive ("leak") Na and K movements were determined under the following conditions: (a) the Na/K pump as the ouabain-induced (OI) flux in the presence and absence of furosemide; (b) the furosemide-sensitive (FS) flux in the presence and absence of ouabain; and (c) the ouabain- and furosemide-resistant (OFR) flux in the presence of ouabain and furosemide. The main findings were: (a) Replacement of bicarbonate and phosphate buffers in the normal culture medium (CM) by HEPES (balanced salt solution, BSS) decreased OI and OFR fluxes by >50% with no effect on the FS components except for the K flux in the absence of ouabain. In contrast, the K/Na ratio rose by 50% in BSS but only in the absence of furosemide, whereas the IC₅₀ for ouabain increased by more than threefold for Na fluxes. (b) In BSS, Ba (1-10 mM) reduced the K/Na ratio by 50%. (c) In BSS but not in CM, furosemide inhibited the OI, K, and Na fluxes by 66 and 36%, respectively. (d) Ouabain significantly decreased the total cation content, an effect abolished by addition of furosemide, both in CM and BSS. (e) The behavior of the FS fluxes was complex and dependent on the incubation medium and the presence of ouabain, suggesting a tight coupling between the pump and FS fluxes. In conclusion, these results show that substitution of bicarbonate and phosphate by HEPES produces significant changes in active and passive net Na

expression. The native Xenopus oocyte has essentially no endogenous inward rectification, allowing a clear qualitative difference between injected and uninjected oocytes to serve in the functional assay. The current was barium blockable, passed little or no outward current, and reversed near Eₐ for the cardiac Iₐ, current. Size fractionation of the mRNA revealed that the active fraction resides between 2 and 4 kb. cDNA prepared from active mRNA fractions has been produced and directionally cloned to produce a cDNA library suitable for the isolation of the Iₐ, cDNA sequence through either subtractive rib selection or direct expression of in vitro transcribed message. [Supported by NIH grant PO1-HL-27385.]
and K fluxes in CVEC. In addition, the data are consistent with the hypothesis that ouabain inhibition of the pump induces a furosemide-sensitive net outward K leak, which together with the inhibitory effect of Ba may explain a K/Na ratio larger than 1.0. [Supported by grants from AHA/MV, AHA/Dayton, and WSU.]

105. Anion and Cation Pathways Identified in the Inner Mitochondrial Membrane by Patch Clamping
Y. N. ANTONENKO,* H. TEDESCHI, and K. W. KINNALLY,* A. N. Belozersky Laboratory, Moscow State University, Moscow, USSR; Department of Biological Sciences, State University of New York, Albany, New York; and Department of Biology, Siena College, Loudonville, New York

Patch clamping of mice liver mitoplast was used to study ion fluxes, and the results correlate well with data obtained by others with suspensions of intact mitochondria. The current was blocked by several inhibitors, showing that it flows through the membrane and not the leak pathway. The membrane conductivity increased by 80 ± 25 pS after pH shifts from 6.8 to 8.3, and the effect was reversible. The transitions varied from sharp single step (in 1 ms or less) to a gradual change. The addition of Mg²⁺ decreased the current at pH 8.3. I-V curves in the presence of a KCl gradient showed that the current was predominantly cationic and shifted to a more anionic current at pH 8.3 Mg²⁺ or suboptimal concentration of propranolol shifted the current to the more cationic side. Even under the conditions favoring the anion current (pH 8.3 without magnesium ions), the ratio of potassium to chloride permeability was 10. Amiodarone, propanalol, and quinine were found to block the current (in order of potency). Amiodarone (7 µM) inhibited the swelling of mitochondria in the presence of potassium acetate and succinate, confirming the inhibition of potassium fluxes shown by patch clamping. The results are most simply interpreted by the presence of two channels, one cation selective (maximally ~100–200 pS) and the other anion selective (~80 pS). [Supported in part by NSF grant DCB-8818432 and USIA A-EEMP-G 193692.]

106. Schwann Cell-to-Axon Protein Transfer in Squid Axons Occurs Independently of Phosphatidylcholine and RNA
DONG JIE LIU,* MICHAEL TYTELL,* MARK FRIEDMAN,* and ROBERT M. GOULD, Institute for Basic Research in Developmental Disabilities, Staten Island, New York; Department of Neurobiology & Anatomy, Wake Forest University, Winston-Salem, North Carolina; and Olympus Corp., Columbia, Maryland

Squid giant axons, with attached small fibers, were incubated with radioactive precursor (tritiated leucine, choline, or uridine) in seawater for 45–60 min. After the labeling period, axons were transferred to seawater containing unlabeled precursor (10 mM) and incubated for periods up to 3 h. The giant axons were then embedded and prepared for autoradiographic analysis at the light microscopic level. The distributions of grains (representing protein, choline lipid, or RNA, respectively) were measured among the following compartments for both the giant axon and the smaller axons: axoplasm, Schwann cell layer, connective tissue layer, and extracellular space, using an Olympus image analysis system. Consistent with earlier studies (e.g., Lasek et al. 1977. J. Cell Biol. 74:501–523), there was a time-dependent transfer of labeled protein from Schwann cells to the giant axon during the chase. A similar time-dependent transfer was observed from Schwann cells to smaller axons with leucine-labeled protein. However, similar glial cell-to-axon transfers were not observed with choline-labeled lipid or uridine-labeled RNA. These results suggest that proteins are transferred selectively, i.e., without phospholipids or RNA. [Supported by grants NS-13980 (to R.M.G.) and BNS-881178 (to M.T.).]

107. Na-dependent Alanine Transport in Plasma Membrane Vesicles Isolated from Rat Skeletal Muscle
PATRICIA A. KING, Department of Medicine, University of Vermont, Burlington, Vermont