Surface and Interface Free-carrier Depletion in GaAs Molecular-Beam Epitaxial Layers: Demonstration of High interface Charge

David C. Look
Wright State University - Main Campus, david.look@wright.edu
C. E. Stutz
K. R. Evans

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation
https://corescholar.libraries.wright.edu/physics/36

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Surface and interface free-carrier depletion in GaAs molecular beam epitaxial layers: Demonstration of high interface charge

D. C. Look
University Research Center, Wright State University, Dayton, Ohio 45432

C. E. Stutz
Electronic Technology Laboratory, Wright Research and Development Center, Wright-Patterson Air Force Base, Ohio 45433

K. R. Evans
Universal Energy Systems, 4401 Dayton-Xenia Road, Dayton, Ohio 45432

(Received 23 June 1989; accepted for publication 7 December 1989)

Molecular beam epitaxial GaAs layers of electron concentration 1.69×10^{17} cm$^{-3}$, and various thicknesses $d = 0.25, 0.50, 1.00, \text{and } 2.00 \mu$m, have been grown on semi-insulating GaAs substrates and characterized by the Hall effect and capacitance-voltage ($C-V$) techniques. A plot of sheet Hall concentration n_s vs d gives accurate values of $(N_D - N_A)$ and $(w_i + w_f)$, the sum of the surface and interface free-carrier depletion widths, respectively. The $C-V$ measurements verify the value of $N_D - N_A$, and also give a good estimate of w_i. By comparing the value of w_i with depletion theory, it is shown unambiguously that the interface depletion is mainly due to interface states, of concentration 1.2×10^{12} cm$^{-2}$ (below midgap). This result has important technological implications.

Hall effect measurements determine the sheet free-carrier concentration n_s in a semiconductor sample, thus, to get the volume concentration n it is necessary to know the sample thickness d, i.e., $n = n_s/d$. In thin samples, however, the effective electrical thickness d_{eff} can be significantly less than d, because surfaces or interfaces can trap or immobilize some of the free carriers.1,2 In this letter we will consider the impact of these “depleted” carriers on Hall effect measurements in uniform, Si-doped, molecular beam epitaxial (MBE) GaAs layers grown on semi-insulating (SI) GaAs substrates. In such layers, a thickness w_i will be depleted due to surface states, and a thickness w_f due to a combination of interface states and substrate acceptor states. For these layers, $n = N_D - N_A$ in the neutral regions, where N_D and N_A are the donor and acceptor concentrations, respectively. Then we have the simple relationship

$$n_s = \int_0^w ndz = (N_D - N_A) d_{eff} = (N_D - N_A)(d - w_i - w_f) = (N_D - N_A)d - (N_D - N_A)(w_i + w_f). \quad (1)$$

Equation (1) essentially defines d_{eff} and $(w_i + w_f)$ from a Hall effect point of view. We assume here that the mobility weighting of the Hall concentration is not important, which will be true unless the mobilities of the electrons in the layer vary strongly with depth. Further discussion of this point can be found in Ref. 4. For example, by using the formula presented there, along with assumed mobility variations in our layers of less than 10%, it can be shown that the mobility weighting effects on n_s are small under 1%.

Equation (1) demonstrates that if samples of varying metallurgical thickness d, but identical in every other way, can be grown, then the slope of an n_s vs d plot will give $(N_D - N_A)$ and the intercept $(w_i + w_f)$. Fortunately, MBE growth processes allow precise control of d through the use of reflection high-energy electron diffraction (RHEED) oscillations, and also excellent control of other variables. Since the free-surface potential ϕ_s is fairly well known,3 we can calculate w_i from this quantity, and then can calculate w_f from the sum $(w_i + w_f)$. Conversely, we can independently measure w_i with a capacitance-voltage ($C-V$) experiment, and then calculate w_f. From combined Hall effect and $C-V$ data, along with a theoretical analysis of interface depletion effects, we will show unambiguously that the interface depletion in our case is due to a high concentration of interface states, and not to the expected filling of substrate acceptor states. This finding has important technological implications, and suggests further experimentation in initial growth conditions.

The MBE layers used in this study were of concentration 1.69×10^{17} cm$^{-3}$ [determined subsequently from Eq. (1)] and thicknesses 0.25, 0.50, 1.00, and 2.00 μm. Note that the 0.25 μm layer is especially important because its doping and thickness are typical of material used for fabrication of metal-semiconductor field-effect transistors (MESFETS). The samples were grown in a Varian Gen II system directly (without buffers) onto four, 2 in., undoped, SI GaAs substrates, which were adjacent wafers taken from the same boule, in order to minimize substrate differences. The substrate temperature was accurately set at 580 $^\circ$C by observing the oxide-desorption temperature, and variations during the runs were estimated at ± 3 $^\circ$C. An As$_4$ cracker was employed, and the RHEED pattern was 2\times4. The wafers were rotated during growth, and were grown one right after the other, with growth conditions held as constant as possible. RHEED oscillations, on a separate, stationary wafer, were used to set a precise growth rate (0.7 μm/h), and thus the thicknesses could be controlled to an estimated 0.01 μm over a small area. Because of possible thickness and carrier concentration variations at different points on a given wafer, the Hall samples (6 mm \times 6 mm) were each cut from...
TABLE I. Sheet electron concentrations \(n_s \), and the “apparent” volume concentrations \(n = n_s/d \). The Hall \(r \) factor is 1.02 for \(n = 1.7 \times 10^{17} \) cm\(^{-3} \) and \(N_s \ll N_D \).

<table>
<thead>
<tr>
<th>(d(\mu m))</th>
<th>(n_s(10^{12} \text{ cm}^{-2}))</th>
<th>(\text{apparent})</th>
<th>(n(10^{13} \text{ cm}^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1.443</td>
<td>0.577</td>
<td>0.588</td>
</tr>
<tr>
<td>0.50</td>
<td>5.595</td>
<td>1.12</td>
<td>1.14</td>
</tr>
<tr>
<td>1.00</td>
<td>13.80</td>
<td>1.38</td>
<td>1.41</td>
</tr>
<tr>
<td>2.00</td>
<td>30.50</td>
<td>1.52</td>
<td>1.55</td>
</tr>
<tr>
<td>true (n)</td>
<td></td>
<td>1.66</td>
<td>1.69</td>
</tr>
</tbody>
</table>

FIG. 1. Least-squares plot of Hall sheet carrier concentration \(n_s \) vs metal­lurgical thickness \(d \). The slope is \((N_D - N_A) \) and the intercept is \(-(w_s + w_t)(N_D - N_A) \). The correlation coefficient is 0.9999. The dot sizes are an estimate of the measurement accuracy.

The Hall effect results are shown in Table I. The slope of a least-squares fit of \(n_s \) vs \(d \) shown in Fig. 1 gives \((N_D - N_A) = 1.66 \times 10^{17} \) cm\(^{-3} \), without any Hall \(r \)-factor correction. For improved accuracy, we have calculated the \(r \) factor by a numerical solution of the Boltzmann transport equation. For low-compensation material, which was verified in our case by a 77 K mobility measurement, \(r = 1.02 \). For a higher compensation, \(N_s/N_D = 0.5, r = 1.06 \), but it is clear from these numbers that the \(r \) factor is not a major consideration at 296 K for carrier concentrations of 1–2 \(\times 10^{17} \) cm\(^{-3} \). Thus, by using \(r = 1.02 \), the true carrier concentration is \(1.69 \times 10^{17} \) cm\(^{-3} \); then from the intercept of the plot in Fig. 1 we can calculate the total depletion thickness: \((w_s + w_t) \approx 0.162 \mu m \). Theoretical values of depletion correction suggested in the literature\(^1,3 \) for \(n = 1.7 \times 10^{17} \) cm\(^{-3} \) are close to this number; however, to our knowledge, this is the first time that \((w_s + w_t) \) has been experimentally measured. Note from Table I the very large error incurred by not accounting for depletion in the calculation of \(n_s \); the 0.25 \(\mu m \) result is a factor 2.9 low, and even the 2 \(\mu m \) sample has an 8% error. Thus, for accurate MBE doping calibration, it is probably worthwhile to grow three or four samples of varying thickness, and apply a similar analysis.

We now compare with Hg probe C-V results, as shown in Fig. 2 for the 0.25 \(\mu m \) sample. It is well known that the C-V technique often gives inaccurate results, due to difficulties with forming the required Schottky barrier, measuring its effective area, accounting for series resistance effects, etc. However, in this case the carrier concentration plateau agrees well with the Hall effect value of \((N_D - N_A) \), which we know to be accurate by virtue of Eq. (1) and Fig. 1. The tail region, of course, does not follow the \((N_D - N_A) \) profile, which is known to be abrupt at \(d = 0.25 \mu m \), but is expected to follow the \(n \) profile reasonably well over the first decade of fall. Thus, from this tail region, we should be able to estimate \(w_t \) to within a Debye length (0.0104 \(\mu m \)) or so.

To be more quantitative, we write expressions for \(w_s \) and \(w_t \), in the depletion approximation:
Here, the surface potential ϕ_s is usually given in the literature as approximately $-0.7 \, V$, the channel (neutral region) potential is calculated for this n to be $\phi_{\mathrm{ch}} = -0.191 \, V$, the thermal potential at 296 K is $kT/e = 0.0255 \, V$, the substrate potential ϕ_{sub} is calculated as $-0.634 \, V$, the substrate acceptor concentration $N_{A,\mathrm{sub}}$ is calculated from measurements of N_{EL2} and n_{sub} to be $3.45 \times 10^{19} \, \text{cm}^{-3}$, and $N_{A,\mathrm{int}}$ is the sheet acceptor density (below the Fermi level) at the layer/substrate interface. Equation (2a) is well known, whereas Eq. (3a) is simply defined. In this study, the difference between ϕ_s and ϕ_{ch} is small. Thus, we have unambiguously demonstrated that most of the interface deformation is due to interface states, not substrate acceptor states. Then, from the condition shown in Eq. (3c), we can calculate $N_{A,\mathrm{int}} = 1.2 \times 10^{12} \, \text{cm}^{-2}$. This is a technologically important finding, because it shows that almost 30% of the electrons in our $0.25 \, \mu\text{m}$ layer (which is a typical MESFET layer) are lost to interface states. Reduction of $N_{A,\mathrm{int}}$ would lead to lower source resistance in a MESFET, an important consideration.

A final remark concerns the potential use of the Hall effect experiment to study the effects on ϕ_s of various surface passivations, such as the recently investigated sulfide treatments. The Hall effect is especially well suited for such investigations, because the original sample surface is unperforated by a Schottky barrier, or light irradiation, as is necessary in some of the other methods for studying ϕ_s. Thus, a sample for which $(w_i + w_f)$ has been determined, such as those in this study, can be subjected to a surface treatment and then remeasured, leading to an accurate value of $\Delta (w_i + w_f) = 0$ (since $\Delta w_f = 0$); from Δw_i, it is possible to determine $\Delta \phi_s$. This technique is very simple and accurate and takes a minimum of time and effort. Results will be reported in the future.

We are grateful to E. Davis for help with the $C-V$ measurements, T. Cooper for the electrical measurements, M. Mier for the EL2 measurements, L. Callahan for sample preparation, J. E. Ehret for crystal growth, and R. Heil for typing the manuscript. The work of DCL was supported under USAF contract F33615-86-C-1062, and the work of KRE under contract F33615-86-C-1050. All of the work was performed at the Electronic Technology Laboratory, Wright Research and Development Center, Wright-Patterson Air Force Base, Dayton, Ohio, with partial support from the Air Force Office of Scientific Research.