Electron Impact Vibrational Excitation Cross Sections of SiF4

R. Nagpal
A. Garscadden
Jerry D. Clark
Wright State University - Main Campus, jerry.clark@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation
http://corescholar.libraries.wright.edu/physics/54

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Electron impact vibrational excitation cross sections of SiF$_4$

R. Nagpal and A. Garscadden

Wright Laboratory, WPAFB, Ohio 45433

J. D. Clark

Physics Department, Wright State University, Ohio 45435

(Received 31 October 1995; accepted for publication 13 February 1996)

Electron drift velocities in mixtures of SiF$_4$ and Ar have been measured using a pulsed-Townsend type drift tube. A set of vibrational excitation cross sections of electron scattering in SiF$_4$ has been subsequently determined by the swarm analyses of measured transport data in highly dilute SiF$_4$-Ar mixtures. The derived cross sections are consistent with the electron transport properties over an order of magnitude in SiF$_4$ concentration in gas mixtures, thus providing evidence that the main features of their near threshold behavior, and of their absolute magnitude have been captured.

The experimental apparatus is a classical pulsed-Townsend type drift tube described in detail in Ref. 11. Briefly, a photoelectron swarm is initiated by the laser irradiation (pulse duration 6 ns) of a gold-palladium photocathode using a 266 nm quadrupled Nd Yag laser. The laser initiated swarm drifts under the influence of a uniform applied electric field across a drift distance of 6.455 cm. The charge swarm is collected at the anode with an integrating amplifier. The averaged charge ramp (over 128 repetitions of the swarm) is then analyzed for the arrival time of the swarm. The w_d are determined from the ratio of the drift distance to the arrival time, and are not corrected for the effects of diffusion, ionization or attachment.

The w_d measurements were made in gas mixtures from 0.1% to 4.8% SiF$_4$ in Ar. The gas mixtures were made by volume mixing in the drift tube using a pre-prepared mixture of 4.8% SiF$_4$ in Ar with pure Ar (both Matheson Semiconductor Grade). The mixing ratios were determined by pressure measurements using 10 Torr and 1000 Torr capacitance manometers. The w_d measurements have an accuracy of 2% based on the measurement uncertainties of the pressure, voltage, temperature, mixture ratio, and swarm arrival time.

The electron transport in the swarm analyses was obtained by conventional “two-term” solution of the collisional Boltzmann transport equation (BTE). A set of trial cross sections was constructed as the input to the numerical solution of the BTE. The calculated w_d were then compared with the experimental data. If the differences between the experimental and calculated w_d were greater than the experimental error margins, then the cross sections were adjusted in the mean energy range of the deviations. The comparisons and modifications of the cross sections were repeated till a satisfactory agreement between the calculated and the experimental data was achieved (see Ref. 13 for further details). The collision cross sections of Ar were taken from Ref. 14, and were fixed throughout this study.

The wide range of concentrations of SiF$_4$ considered in the gas mixtures permits different regions of the electron energy distribution function (EEDF) to be probed in the swarm analysis. For the highest dilutions (0.1% and 0.2%), the elastic scattering events are essentially controlled by the momentum transfer cross section (q_m) of Ar, and the inelastic scattering events are determined by the vibrational excitation collisions of electrons with SiF$_4$. The respective energy losses associated with the four infrared active vibrational modes of SiF$_4$ are: ν_1 (0.099 eV), ν_2 (0.032 eV), ν_3 (0.126 eV), and ν_4 (0.052 eV). In order to reduce the parameter space of the solutions, the vibrational modes ν_1 and ν_3 (which are relatively close in threshold energies) were lumped together as one process with an energy loss threshold of 0.099 eV.

Figure 1 presents the comparisons between the experimental, and the calculated w_d in %SiF$_4$-Ar mixtures. The converged vibrational excitation cross sections of SiF$_4$ resulting from the unfolding procedure are shown in Fig. 2. At low E/N, the w_d data for mixtures show large increases over the corresponding data in either constituent gas, and are domi-
nated by the well known phenomenon of Negative Differential Conductivity\(^16\) (see Ref. 17 for \(w_d\) measurements in pure SiF\(_4\)). The demanding requirements to achieve agreement with the experimental \(w_d\)/E\(N\)-concentration surface result in (and illustrate) consistency in the present derived vibrational cross sections. As expected, the measured data are consistent with the calculations for 0.1 and 0.2\% mixture compositions since the cross sections were essentially derived from these gas mixtures. However systematic deviations of magnitudes greater than the experimental error margins between the calculated and the measured data begin to appear for gas mixture compositions higher than 0.5\%. The reasons for these discrepancies are twofold:

1. For mixture compositions greater than 0.5\%, the \(q_m\) of SiF\(_4\) also have to be included in the cross section unfolding procedure. We have made an estimate of the \(q_m\) of SiF\(_4\) from the swarm analyses (using ‘two-term’ Boltzmann calculations)\(^18\) of the measured \(w_d\) data in pure SiF\(_4\). The results indicate a large cross section \((\approx 10^{-14} \text{ cm}^2)\) at very low electron energies accompanied by a Ramsauer-Townsend minimum in the cross section at around 0.4 eV.

2. More importantly, consider the relative anisotropy in the EEDF in gas mixtures. Figure 3 presents the ratio \(f_1/f_0\), where \(f_1\) and \(f_0\) are the anisotropic (due to inelastic scattering) and isotropic (due to elastic scattering) components of the EEDF respectively. The ratios presented in Fig. 3 were calculated at the E/N values corresponding to the maximum in the \(w_d\) curves where their values are expected to be the highest. We point out that for these typical conditions, the \(w_d\) can become comparable to the electron thermal velocities. Figure 3 shows that the EEDF in gas mixture compositions exceeding 0.5\% are highly anisotropic and therefore the ‘two-term’ solutions of the BTE are no longer valid for accurate description of electron transport in these gas mixtures. The deviations between the measured and the calculated data near the \(w_d\) maxima are therefore enhanced by the inadequate description of electron transport in these gas mixtures.\(^13\) Further, in pure SiF\(_4\), the magnitude of the vibrational excitation cross sections is larger than that of

momentum transfer near its Ramsauer-Townsend minimum leading to a complete breakdown of the ‘two-term’ approximation.\(^18\)

Following the above, the \(q_m\) of SiF\(_4\) has to be redetermined by obtaining the electron transport through ‘multi-term’ solutions of the BTE or Monte-Carlo calculations in pure SiF\(_4\), in conjunction with higher fractional SiF\(_4\) composition mixture \(w_d\) data, and the present derived vibrational cross sections. We point out that the electron transport in highly dilute mixtures of SiF\(_4\) and Ar reported here is analogous to that occurring in fluorine based Si etching reactors where SiF\(_4\) is the by-product of the etching processes. Therefore the results reported here are directly applicable towards accurate estimations of electron transport, and of power deposition in plasma etching reactors.

In conclusion, the present measurements and analyses have resulted in important guidelines for deriving the low energy electron impact cross sections of SiF\(_4\). The vibrational excitation cross sections derived in this work can now be used to derive the momentum transfer cross sections of SiF\(_4\). The established data base can then be extended to include attachment, dissociation, and ionization cross sections.

![FIG. 1. Electron drift velocities in Ar and %SiF\(_4\)--Ar mixtures. Points represent experimental data. Lines represent calculations using the converged vibrational excitation cross sections derived from the swarm analyses.](Image)

![FIG. 2. Swarm derived vibrational excitation cross section set of SiF\(_4\). Refer to text for denoted symbols.](Image)

![FIG. 3. Relative anisotropy \((f_1/f_0)\) in %SiF\(_4\)--Ar mixtures. The E/N values at which the ratios have been calculated are also shown in the legend box \((1 \text{Td} = 10^{-17} \text{ V cm}^2)\).](Image)
The above extensions and analyses are currently in progress and will be reported.

This work has been funded by the Wright Laboratory, and in part by Sandia National Laboratories under a CRADA with SEMATECH.