11-2009

The Regular Excluded Minors for Signed-Graphic Matroids

Hongxun Qin

Dan Slilaty
Wright State University - Main Campus, daniel.slilaty@wright.edu

Xiangqian Zhou
Wright State University - Main Campus, xiangqian.zhou@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/math

Part of the Applied Mathematics Commons, Applied Statistics Commons, and the Mathematics Commons

Repository Citation
https://corescholar.libraries.wright.edu/math/3

This Article is brought to you for free and open access by the Mathematics and Statistics department at CORE Scholar. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
The Regular Excluded Minors for Signed-Graphic Matroids

HONGXUN QIN¹, DANIEL C. SLILATY²† and XIANQQIAN ZHOU²

¹Department of Mathematics, The George Washington University, Washington DC, 20052, USA
(e-mail: hqin@gwu.edu)

²Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA
(e-mail: {daniel.slilaty|xianqian.zhou}@wright.edu)

Received 13 March 2007; revised 16 April 2009

Dedicated to Thomas Dowling on the occasion of his retirement

We show that the complete list of regular excluded minors for the class of signed-graphic matroids is $M^*(G_1),\ldots,M^*(G_{29}),R_{15},R_{16}$. Here G_1,\ldots,G_{29} are the vertically 2-connected excluded minors for the class of projective-planar graphs and R_{15} and R_{16} are two regular matroids that we will define in the article.

1. Introduction

We assume the reader is familiar with matroid theory as in [7]. If the reader is not familiar with signed graphs and their matroids as in [19], then we review all of the relevant material in Section 2. Signed-graphic matroids are exactly the minors of Dowling geometries [3] for the group of order two. Our main result is Theorem 1.1. Here G_1,\ldots,G_{29} are the vertically 2-connected excluded minors for the class of projective-planar graphs.¹ The matroids R_{15} and R_{16} are introduced in Section 4.

Theorem 1.1. A regular matroid M is a signed-graphic matroid if and only if M contains none of the following as a minor: $M^*(G_1),\ldots,M^*(G_{29}),R_{15},$ and R_{16}.

† Research partially supported by NSA Young Investigator Grants #H98230-05-1-0030 and #H98230-07-1-0086.

¹ There are 35 excluded minors for the class of projective-planar graphs and 29 of these are vertically 2-connected. See Archdeacon [1] and Glover, Huneke and Wang [4], or see [6, Theorem 6.5.1].
Whittle conjectures in [18] that there is a theorem for near-regular matroids similar to Theorem 1.2 that uses signed-graphic matroids and co-signed-graphic matroids as the basic terms in the decomposition. Since the proof of Theorem 1.2 uses the list of excluded minors for the class of graphic matroids, it is possible that a result for near-regular matroids would use the list of excluded minors for the class of signed-graphic matroids.

Theorem 1.2 (Seymour [10]). Every regular matroid M is constructed by a sequence of k-sums ($k \in \{1, 2, 3\}$) of graphic matroids, cographic matroids, and copies of the matroid R_{10}.

Since we are working within the class of regular matroids, it is no surprise that a proof of Theorem 1.1 starts with Theorem 1.2. Given Theorem 1.2, we know that if M is a regular excluded minor for the class of signed-graphic matroids and M is internally 4-connected, then M is either graphic, cographic, or R_{10}. Since a graphic matroid is signed-graphic and since R_{10} is the matroid of the signed graph $-K_5$ (by $-G$ we mean the signed graph with G as its underlying graph and all edges signed negatively) we must have that M is cographic. By part (1) of Theorem 1.3, we then get that $M \in \{M^*(G_1), \ldots, M^*(G_{29})\}$. Also, part (2) of Theorem 1.3 tells us that each of $M^*(G_1), \ldots, M^*(G_{29})$ is indeed an excluded minor for the class of signed-graphic matroids.

Theorem 1.3. Let M be a cographic matroid.

1. If M is 3-connected and an excluded minor for the class of signed-graphic matroids, then $M \in \{M^*(G_1), \ldots, M^*(G_{29})\}$.
2. If $M \in \{M^*(G_1), \ldots, M^*(G_{29})\}$, then M is an excluded minor for the class of signed-graphic matroids.

Proof. Write $M = M^*(G)$, where G has no isolated vertices.

1. Since $M/e = M^*(G \setminus e)$ and $M \setminus e = M^*(G/e)$ are both signed-graphic and connected, Theorem 1.4 implies that G/e and $G \setminus e$ are both projective-planar, while G is not projective-planar, and so $G \in \{G_1, \ldots, G_{29}\}$.

2. Since $M(G)$ is connected, G/e and $G \setminus e$ are both connected, and so Theorem 1.4 implies that $M^*(G)/e = M^*(G \setminus e)$ and $M^*(G) \setminus e = M^*(G/e)$ are both signed-graphic, while $M(G)$ is not.

Theorem 1.4. Let G be a connected graph.

1. If G is projective-planar, then $M^*(G)$ is signed-graphic [11].
2. If $M^*(G)$ is connected and signed-graphic, then G is projective-planar [8, 12].

Therefore, our work in this paper is to show that if M has connectivity $k \in \{2, 3\}$, then $M \in \{M^*(G_1), \ldots, M^*(G_{29}), R_{15}, R_{16}\}$ and that R_{15} and R_{16} are excluded minors. The case for $k = 2$ is done in Section 3 and the case for $k = 3$ is done in Section 6. In Section 2 we have some preliminaries, in Section 4 we introduce the matroids R_{15} and R_{16}, and in Section 5 we present some lemmas that we will use in Section 6.
2. Preliminaries

Graphs. A graph G consists of a collection of vertices (i.e., topological 0-cells), denoted by $V(G)$, and a set of edges (i.e., topological 1-cells), denoted by $E(G)$, where an edge has two ends, each of which is attached to a vertex. A link is an edge that has its ends incident to distinct vertices and a loop is an edge that has both of its ends incident to the same vertex.

A circle is a connected, 2-regular graph (i.e., a simple closed path). In graph theory a circle is often called a cycle, circuit, polygon, etc. We denote the cycle matroid of the graph G by $M(G)$. If $X \subseteq E(G)$, then we denote the subgraph of G consisting of the edges in X and all vertices incident to an edge in X by $G\! :X$. The collection of vertices in $G\! :X$ is denoted by $V(X)$, the number of vertices in $G\! :X$ is denoted by v_X, and the number of connected components in $G\! :X$ is denoted by c_X.

For $k \geq 1$, a k-separation of a graph is a bipartition (A,B) of the edges of G such that $|A| \geq k$, $|B| \geq k$, and $|V(A) \cap V(B)| = k$. A vertical k-separation (A,B) of G is a k-separation where $V(A) \setminus V(B) \neq \emptyset$ and $V(B) \setminus V(A) \neq \emptyset$. A separation or vertical separation (A,B) is said to have connected parts when $G\! :A$ and $G\! :B$ are both connected. A connected graph on at least $k+1$ vertices is said to be vertically k-connected when there is no vertical r-separation for $r < k$. Vertical k-connectivity is usually called k-connectivity, but here we wish to distinguish between this kind of graph connectivity and the second type used in Tutte’s book on graph theory [17].

Given a subgraph H of G, an H-bridge is either an edge not in H whose end-points are both in H or a connected component C of $G \setminus V(H)$ along with the links between C and H. Given an H-bridge B of G: a foot of B is an edge of B with an end-point in H, a vertex of attachment of B is a vertex in H that is an end-point of a foot of B, and \overline{B} denotes the bridge B minus the vertices of attachment of B (i.e., either a connected component of $G \setminus V(H)$ or \emptyset when B is a single edge). An H-bridge of G with n vertices of attachment is called an n-bridge.

If G' is a subdivision of a graph G where G has minimum degree at least three, then a branch vertex of G' is a vertex of degree at least three in G' and a branch is a path in G' corresponding to an edge in G. A G'-bridge B is called local if all attachments of B are on the same branch of G'. A useful fact about local bridges that we will need later is Proposition 2.1.

Proposition 2.1 ([6, Lemma 6.2.1]). Let G be a vertically 3-connected graph. If $H \subseteq G$ is a subdivision of a graph Γ, then there is a subdivision H' of Γ in G such that H' has the same branch vertices as H, if e is a branch in H then the corresponding branch e' in H' connects the same branch vertices, and H' has no local bridges.

Signed graphs. A signed graph is a pair (G,σ) in which $\sigma: E(G) \to \{+1,-1\}$. A circle or path in a signed graph Σ is called positive if the product of signs on its edges is positive, otherwise the circle or path is called negative. If H is a subgraph of Σ, then H is called balanced when all circles in H are positive. A balancing vertex of an unbalanced signed graph is a vertex whose removal leaves a balanced subgraph.
A switching function on a signed graph $\Sigma = (G, \sigma)$ is a function $\eta : V(\Sigma) \to \{+1,-1\}$. The signed graph $\Sigma^\eta = (G, \sigma^\eta)$ has sign function σ^η defined on all edges of G by $\sigma^\eta(e) = \eta(v)\sigma(e)\eta(w)$, where v and w are the end-points of e. When two signed graphs Σ_1 and Σ_2 satisfy $\Sigma_1^\eta = \Sigma_2$ for some switching function η, Σ_1 and Σ_2 are said to be switching-equivalent. Two signed graphs with the same underlying graph are switching-equivalent if and only if they have the same list of positive circles (see [19, Proposition 3.2]). Switching-equivalent signed graphs are considered to be isomorphic.

In a signed graph $\Sigma = (G, \sigma)$, the deletion of e from Σ is defined as $\Sigma \setminus e = (G \setminus e, \sigma)$, where σ is restricted to the domain $E(G \setminus e)$. The contraction of an edge e is defined for three distinct cases. If e is a link, then $\Sigma/e = (G/e, \sigma^\eta)$, where η is a switching function on Σ satisfying $\sigma^\eta(e) = +1$. Of course, then σ^η is restricted to the edges of G/e in Σ/e. Note that Σ/e is well defined up to switching. If e is a positive loop, then $\Sigma/e = \Sigma \setminus e$. If e is a negative loop incident with vertex v, then Σ/e is the signed graph obtained from Σ as follows: links incident to v become negative loops incident to their other end-point, negative loops incident to v other than e become positive loops incident to v, and edges not incident to v remain unchanged. The reason for this definition of contraction in signed graphs is so that contractions in signed graphs will correspond to contractions in their signed-graphic matroids.

A minor of Σ is a signed graph obtained from Σ by a sequence of contractions and deletions of edges, deletions of isolated vertices, and switchings. A link minor is a minor that is obtained without contracting any negative loops.

A signed graph is called tangled if it is unbalanced, has no balancing vertex, and no two vertex-disjoint negative circles. The proof of Proposition 2.2 is straightforward and is left to the reader.

Proposition 2.2. If Σ is tangled, then Σ has exactly one unbalanced block; in particular, Σ has no negative loops.

Proposition 2.3. If Σ_1 and Σ_2 are tangled, Σ_1 is a minor of Υ, and Υ is a minor of Σ_2, then Υ is tangled and is a link minor of Σ_2.

Proof. Let \mathcal{B} be the class of balanced signed graphs, let \mathcal{J} be the class of signed graphs that are balanced after removing negative loops, let \mathcal{V} be the class of signed graphs with balancing vertices, and let \mathcal{T} be the class of tangled signed graphs. By the definitions of these types of signed graphs and the definition of contractions in signed graphs we get the following three facts: since tangled signed graphs do not have negative loops (Proposition 2.2), any 1-edge deletion or contraction of a member of \mathcal{T} is in \mathcal{T} or \mathcal{V}; any 1-edge deletion or contraction of a member of \mathcal{V} is in \mathcal{T}, \mathcal{J}, or \mathcal{B}; and any 1-edge deletion or contraction of a member of \mathcal{J} or \mathcal{B} is in \mathcal{J} or \mathcal{B}. Hence, when obtaining a tangled minor of a tangled signed graph, we contract only links and never leave the class of tangled signed graphs. \qed
When drawing signed graphs, positive edges are drawn as solid curves and negative edges as dashed curves. A signed graph is said to be vertically k-connected when its underlying graph is vertically k-connected.

Signed-graphic matroids. The frame matroid (often called the bias matroid) of Σ is denoted by $M(\Sigma)$. In this paper such a matroid is simply called a signed-graphic matroid. The element set of $M(\Sigma)$ is $E(\Sigma)$ and a circuit of $M(\Sigma)$ is either the edge set of a positive circle or the edge set of a subdivision of a subgraph in Figure 1 with no positive circles.

For any $e \in E(\Sigma)$, we have that $M(\Sigma \setminus e) = M(\Sigma) \setminus e$ and $M(\Sigma/e) = M(\Sigma)/e$ (see [19, Theorem 5.2]). Note that if $\Sigma = (G, \sigma)$ is balanced, then $M(\Sigma) = M(G)$. Hence, the class of signed-graphic matroids contains the class of graphic matroids. Given two signed graphs Σ_1 and Σ_2 with the same underlying graph, $M(\Sigma_1) = M(\Sigma_2)$ if and only if Σ_1 and Σ_2 have the same positive and negative circles, which holds if and only if Σ_1 and Σ_2 are switching-equivalent.

Given $X \subseteq E(\Sigma)$, we denote the number of balanced connected components of $\Sigma : X$ by b_X. If $X \subseteq E(\Sigma)$, then $r(X) = v_X - b_X$ (see [19, Theorem 5.1(j)]). For brevity we write $r(\Sigma)$ to mean $r(M(\Sigma))$. The rank function tells us that if Σ is not connected after removing isolated vertices, then $M(\Sigma)$ is not connected. It also tells us that a cocircuit of $M(\Sigma)$ is a minimal set of edges whose removal increases the number of balanced components by one.

Theorem 2.4 is from [14, Theorems 1.3 and 1.4]. It tells us that regularity of $M(\Sigma)$ is almost synonymous with Σ being tangled. Theorem 2.5 is an important fact relating matroid connectivity and graph connectivity.

Theorem 2.4 (Slilaty and Qin [14]). If Σ is connected, then the following are true.

1. If Σ is tangled, then $M(\Sigma)$ is regular.
2. If $M(\Sigma)$ is regular and not graphic, then Σ is tangled.

Theorem 2.5 (Slilaty and Qin [15, Theorem 1.6]). If Σ is tangled and has no isolated vertices and $M(\Sigma)$ is k-connected for any $k \in \{2, 3\}$, then Σ is vertically k-connected.

If Σ is a signed graph with balancing vertex v, then by switching we may assume that all negative edges of Σ are incident to v. Let G_v be the graph obtained from Σ by splitting v into two vertices v_+ and v_-, where positive links incident to v become links incident to
v_+, negative links incident to v become links incident to v_-, negative loops incident to v become \(v_+v_-\)-links, and positive loops incident to v are positive loops anywhere in \(G_v\).

Proposition 2.6. If \(\Sigma\) has a balancing vertex \(v\) and \(G_v\) is the graph obtained from \(\Sigma\) as in the previous paragraph, then \(M(\Sigma) = M(G_v)\).

1-sums. Let \(\Sigma\) and \(\Upsilon\) be signed graphs with non-empty edge sets such that \(\Upsilon\) is balanced. The 1-sum of \(\Sigma\) and \(\Upsilon\) is the identification of \(\Sigma\) and \(\Upsilon\) along some vertex and is denoted by \(\Sigma \oplus_1 \Upsilon\). Proposition 2.7 is immediate from our definition of a signed-graphic 1-sum and the definition of a matroid 1-sum.

Proposition 2.7. If \(\Sigma\) and \(\Upsilon\) are signed graphs, then \(M(\Sigma \oplus_1 \Upsilon) = M(\Sigma) \oplus_1 M(\Upsilon)\).

2-sums. Given two signed graphs \(\Sigma\) and \(\Upsilon\), we will define two methods of taking their 2-sum. By \(\Sigma \oplus_2 \Upsilon\) we mean a 2-sum that is one of these two types. If both of \(\Sigma\) and \(\Upsilon\) are unbalanced, then the 1-vertex 2-sum is obtained by identifying the signed graphs along a negative loop and then deleting the negative loop. If exactly one of \(\Sigma\) and \(\Upsilon\) is unbalanced, then the 2-vertex 2-sum of the signed graphs is obtained by choosing a link in each signed graph, switching so that the links have the same sign in each, identifying the two signed graphs along the links, and then deleting that link. In both cases it is required that the edge along which the 2-sum is taken is not a coloop in the signed-graphic matroid. The verification of Proposition 2.8 is routine.

Proposition 2.8. If \(\Sigma\) and \(\Upsilon\) are signed graphs, then \(M(\Sigma \oplus_2 \Upsilon) = M(\Sigma) \oplus_2 M(\Upsilon)\).

Proposition 2.9. If \(M_1\) is a signed-graphic matroid and \(M_2\) is a graphic matroid, then \(M_1 \oplus_2 M_2\) is signed-graphic.

Proof. Say that \(M_1 = M(\Sigma)\), \(M_2 = M(G)\), and \(e\) is the edge in each of \(\Sigma\) and \(G\) along which the 2-sum is taken. Since \(e\) is not a matroid loop, \(e\) is a link in \(G\) (call its end-points \(v\) and \(w\)). If \(e\) is a link in \(\Sigma\), then let \(\Upsilon\) be the signed graph with underlying graph \(G\) and all edges signed positively. Note that \(M(\Upsilon) = M(G)\). If \(e\) is a negative loop in \(\Sigma\), then let \(\Upsilon\) be the signed graph with a balancing vertex obtained from \(G\) by the reverse of the operation described in Proposition 2.6 performed on the end-points of \(e\) in \(G\). Note that \(e\) is then a negative loop in \(\Upsilon\). In either case Proposition 2.8 implies that \(M_1 \oplus_2 M_2 = M(\Sigma) \oplus_2 M(\Upsilon) = M(\Sigma \oplus_2 \Upsilon)\), as required.

3-sums. Given a signed graph \(\Sigma\) and a balanced signed graph \(\Upsilon\) (or a graph \(G\)), their 3-vertex 3-sum is obtained by selecting a positive triangle in each term, switching so that the edges of the triangle have the same sign pattern in each term, identifying the signed graphs along the triangles, and then deleting the edges.

We also make use of the operation of symmetric differences of binary matroids. If \(M_1\) and \(M_2\) are binary matroids on edge sets \(E_1\) and \(E_2\) with \(E_1 \cap E_2 \neq \emptyset\), then there is a
binary matroid $M_1 \triangle M_2$ on edge set $E_1 \triangle E_2$ whose circuits are the minimal non-empty elements of $\{C_1 \triangle C_2 : C_i$ is a (possibly empty) disjoint union of circuits in $M_i\}$ that are contained in $E_1 \triangle E_2$. An important property of this symmetric difference operation is that $(M_1 \triangle M_2)^* = M_1^* \triangle M_2^*$ [10, p. 319]. In [10], the 3-sum $M_1 \oplus_3 M_2$ for binary matroids is defined as $M_1 \triangle M_2$, where $E_1 \cap E_2$ is a triangle in each M_i that is co-independent in each M_i and each $|E_i| \geq 7$. Also, if M_1 and M_2 satisfy these conditions, then $M_1 \oplus_3 M_2$ is the modular sum operation from [2]. See [14, Proposition 3.4] for a verification of Proposition 2.10.

Proposition 2.10. If Σ is a signed graph such that $M(\Sigma)$ is regular and Υ is a balanced signed graph, then $M(\Sigma \oplus_3 \Upsilon) = M(\Sigma) \oplus_3 M(\Upsilon)$ (or $M(\Sigma) \triangle M(\Upsilon)$ when the 3-sum is not defined).

Proposition 2.11. If M_1 is a regular signed-graphic matroid and M_2 is a graphic matroid, then $M_1 \oplus_3 M_2$ is signed-graphic.

Proof. It is known that the class of graphic matroids is closed under 3-summing, so assume that M_1 is not graphic. Now say that $M_1 = M(\Sigma)$, $M_2 = M(G)$, and T is the 3-point line along which the 3-sum is taken. Since $M(\Sigma)$ is not graphic, Σ is tangled (Theorem 2.4) and so T is a positive triangle in Σ because Σ is loopless (Proposition 2.2). Now let Υ be the signed graph with underlying graph G and all edges signed positively. Note that T is a positive triangle in G and so, by Proposition 2.10, $M_1 \oplus_3 M_2 = M(\Sigma) \oplus_3 M(\Upsilon) = M(\Sigma \oplus_3 \Upsilon)$, as required. \[\square \]

Proposition 2.12. If G_1 is a vertically 2-connected graph, G_2 is either a vertically 2-connected graph or tangled signed graph, and both are as shown in Figure 2, then the parallel connection of $M^*(G_1)$ with $M^*(G_2)$ along the triad T is $M^*(H)$, where $M^*(H)$ is the cographic matroid of H when H is a graph and is the dual of the signed-graphic matroid of H when H is a signed graph.

Proof. Consider G_1 to be an all-positive signed graph when G_2 is a signed graph. A circuit C in H is either a positive circle or a one-vertex join of two negative circles. In the former case, C is either a positive circle in some $G_i \setminus T$ or $C = C_1 \cup C_2$, where C_i is a positive circle in G_i and $C_1 \cap C_2$ consists of two edges of T. In the latter case, C is either the one-vertex join of two negative circles in $G_2 \setminus T$ or $C = C_1 \cup C_2 \cup D$, where D is a negative circle in $G_2 \setminus T$, C_1 is a positive circle in G_1, C_2 is a negative circle in G_2, and $C_1 \cap C_2$ consists
of two edges of T. So if $C = C_1 \cup \ldots \cup C_n$ is a union of circuits in $M(H)$, then there is a corresponding union of circuits C_i in $M(G_i)$. Thus $E(H) \setminus C = (E(G_1) \setminus C_1) \cup (E(G_2) \setminus C_2)$. Thus a flat in $M^*(H)$ is a flat in the parallel connection $P(M^*(G_1), M^*(H))$. Conversely, any flat in the parallel connection is a flat of one of the terms or the union of a flat from each term with a common intersection in T. Similarly, we can show that any flat in the parallel connection will correspond in the same way to a flat in $M^*(H)$.

3. Excluded minors that are 2-connected but not 3-connected

A collection \mathcal{N} of connected matroids is called 1-rounded when any connected matroid M containing a minor from \mathcal{N} satisfies the following: for every $e \in E(M)$, M has a minor from \mathcal{N} that uses e.

Theorem 3.1 (Seymour [9]). The collection $\{U_{2,4}, F_7, F_7^*, M^*(K_5), M^*(K_{3,3}), M^*(K'_{3,3})\}$ is 1-rounded. Here $K'_{3,3}$ denotes the graph obtained from $K_{3,3}$ by adding a link joining two non-adjacent vertices.

Theorem 3.2. If M is 2-connected, not 3-connected, and a regular excluded minor for the class of signed-graphic matroids, then $M \in \{M^*(G_1), \ldots, M^*(G_{29})\}$.

Proof. Since M is 2-connected but not 3-connected, $M = M_1 \oplus M_2$. Let e be the edge along which the 2-sum is taken. Since M is minor minimal, each M_i is signed-graphic and hence not graphic by Proposition 2.9. Now, since M_i is regular it does not contain any of $U_{2,4}, F_7,$ and F_7^* as a minor; however, being not graphic implies that M_i contains either $M^*(K_5)$ or $M^*(K_{3,3})$ as a minor. Theorem 3.1 now implies that each M_i contains an $M^*(H_i)$ minor where $H_i \in \{K_5, K_{3,3}, K'_{3,3}\}$ and $e \in H_i$. Thus M contains $M^*(H_1) \oplus M^*(H_2) = M^*(H_1 \oplus H_2)$ as a minor and one can check that the 6 possibilities for $H_1 \oplus H_2$ are all in $\{G_1, \ldots, G_{29}\}$. So, since M is minor minimal, $M = M^*(H_1 \oplus H_2) \in \{M^*(G_1), \ldots, M^*(G_{29})\}$.

4. The matroids R_{15} and R_{16}

Consider the graphs G_1 and H_1 in Figure 3. (Note that G_1 is one of the 29 vertically 2-connected excluded minors for the class of projective-planar graphs and, by Proposition 2.12, $M^*(H_1)$ is the parallel connection of $M^*(K_4)$ and $M^*(K_{3,3})$ along a triad in each graph.) Let T be the 3-edge bond separating the two copies of $K_{2,3}$ in G_1. The matroid R_{15}
The Regular Excluded Minors for Signed-Graphic Matroids

Figure 4.

is obtained from $M^*(G_1)$ by a ΔY exchange along T (i.e., $R_{15} = M^*(G_1) \triangle M(K_4)$). Also, $R_{15} = M^*(K_{3,3}) \oplus_3 M^*(H_1)$, where the 3-sum is along a triad in $K_{3,3}$ and the 3-edge bond T' in H_1 separating the triangle and the copy of $K_{2,3}$. R_{15} has 15 elements and rank 7.

The matroid R_{16} is obtained by taking two edge-disjoint triangles of $M(K_5)$ and 3-summing a copy of $M^*(K_{3,3})$ along each of the two triangles. The matroid R_{16} has 16 elements and rank 8.

Proposition 4.1. R_{15} is not signed-graphic.

Proposition 4.2. Any proper minor of R_{15} is signed-graphic.

Proposition 4.3. R_{16} is not signed-graphic.

Proposition 4.4. Any proper minor of R_{16} is signed-graphic.

Propositions 4.1–4.4 show that R_{15} and R_{16} are both excluded minors for the class of signed-graphic matroids. In the remainder of this section we prove these four propositions.

Proposition 4.5. The matroids R_{15} and R_{16} are both 3-connected, not graphic, and not cographic.

Proof. R_{15} and R_{16} are both 3-connected as each is a 3-sum of two 3-connected matroids. Both R_{15} and R_{16} are not graphic because each contains an $M^*(K_{3,3})$ minor. R_{16} is not cographic because it contains an $M(K_5)$ minor. Lastly, we show that R_{15} is not cographic by displaying an $M(K_{3,3})$ minor. By deleting one and contracting two edges in the $K_{2,3}$ subgraph of H_1 we obtain the triangular prism P (i.e., two vertex-disjoint triangles connected by three links) without disturbing the 3-edge bond T' in H_1. Note that $M^*(P) = M(K_5 \setminus e)$, and so $R_{15} = M^*(K_{3,3}) \oplus_3 M^*(H_1)$ contains $M^*(K_{3,3}) \oplus_3 M(K_5 \setminus e)$ as a minor. Now $M^*(K_{3,3})$ contains an $M(K_4)$ minor using any of the triads of $K_{3,3}$. So now R_{15} contains $M(K_4) \triangle M(K_5 \setminus e) = M(K_4 \oplus_3 K_5 \setminus e) = M(K_{3,3})$ as a minor.

The matroid R_{12} is defined as $M^*(K_{3,3}) \oplus_3 M(K_5 \setminus e)$, where the 3-sum is along a triad in $K_{3,3}$ and the separating triangle in $K_5 \setminus e$. Let $\Sigma_{3,3}$ and Σ_{12}, respectively, be the signed graphs in Figure 4.
Proposition 4.6 (Zaslavsky [20, Proposition 4A]). If \(\Sigma \) is a signed graph without isolated vertices, then \(M(\Sigma) \cong M^*(K_{3,3}) \) if and only if \(\Sigma \cong \Sigma_{3,3} \).

Proposition 4.7. If \(\Sigma \) is a signed graph without isolated vertices, then \(M(\Sigma) \cong R_{12} \) if and only if \(\Sigma \cong \Sigma_{12} \).

In order to prove Proposition 4.7 we need Propositions 4.8–4.10. Proposition 4.8 is implied from the main result of [13] and Theorem 1.4.

Proposition 4.8 (Slilaty [13]). If \(\Sigma \) is a tangled signed graph without isolated vertices such that \(M(\Sigma) \) is 3-connected, not graphic, not cographic, and not \(R_{10} \), the \(\Sigma = \nabla \oplus_3 G \) where \(\nabla \) is tangled, \(G \) is all positive, and \(G \) has at least 5 vertices.

Proposition 4.9. If \(M_1 \) and \(M_2 \) are binary matroids and \(M_1 \oplus_3 M_2 \) is 3-connected and contains an \(M(K_5) \) minor, then either \(M_1 \) or \(M_2 \) contains an \(M(K_5) \) minor.

Proof. Suppose that \(N \cong M(K_5) \) is a minor of \(M_1 \oplus_3 M_2 \) such that each \(A_i = E(N) \cap E(M_i) \neq \emptyset \). Because \((E(M_1), E(M_2)) \) is a 3-separation of \(M_1 \oplus_3 M_2 \) and this 3-separation induces a separation in any minor, \(r_\kappa(A_1) + r_\kappa(A_2) - r(N) \leq 2 \). Since \(N \) is internally 4-connected, \(|A_1| \leq 3 \) or \(|A_2| \leq 3 \), assume the former. Also, since \(N \) is simple and has no triads, \(|A_1| \leq 3 \) implies \(A_1 \) is a triangle of \(N \) or an independent set of one or two elements. Now, when viewing \(M_1 \) and \(M_2 \) as binary matrices where the triangle along which the 3-sum \(M_1 \oplus_3 M_2 \) is taken contains three non-zero rows, we see that \(M(K_5) \) is a minor of \(M_2 \). \(\square \)

Proposition 4.10. If \(\Sigma \) is an unbalanced signed graph without isolated vertices, then \(M(\Sigma) \cong M(K_5) \) if and only if \(\Sigma \) is one of the signed graphs in Figure 5.

Proof of Proposition 4.10. Since \(M(K_5) \) is 3-connected, it follows from Propositions 2.7 and 2.8 that \(\Sigma \) is vertically 2-connected. It then follows from [14, Theorem 2.6] that \(\Sigma \) either has a balancing vertex, is balanced after removing any negative loops, or is tangled. In the first case, it follows from Proposition 2.6 that \(\Sigma \) is the signed graph of Figure 5(a). In the second case, it follows from [14, Proposition 2.2] that \(\Sigma \) is the signed graph of Figure 5(b). If \(\Sigma \) is tangled, then by Proposition 2.2 \(\Sigma \) has no negative loops. So since
$M(K_5)$ is simple with 10 elements and rank four, Σ has at least four negative digons on four vertices. This will force two vertex-disjoint negative digons, a contradiction. □

Proof of Proposition 4.7. Suppose that $R_{12} = M(\Sigma)$. Since R_{12} is 3-connected and not graphic (because R_{12} has an $M'(K_{3,3})$ minor), Σ is tangled and vertically 3-connected (Theorems 2.4 and 2.5). Since $R_{12} = M'(K_{3,3}) \oplus_3 M(K_5 \setminus e)$ contains $M(K_4) \oplus_3 M(K_5 \setminus e) = M(K_4 \oplus_3 K_5 \setminus e) = M(K_{3,3})$ as a minor, R_{12} is not cographic. Thus $\Sigma = \overline{Y} \oplus_3 G$ as in Proposition 4.8, with at least 5 vertices in G. It cannot be that $M(\overline{Y})$ is graphic, because otherwise $M(\Sigma) = M(\overline{Y} \oplus_3 G) = M(\overline{Y}) \oplus_3 M(G)$ would be graphic, a contradiction. Thus $r(\overline{Y}) \geq 4$ and so, since $|V(\Sigma)| = 6$ and $|V(G)| \geq 5$, we have that $|V(\overline{Y})| = 4$ and $|V(G)| = 5$.

Since $|V(\overline{Y})| = 4$, it must follow that $M(\overline{Y})$ is cographic unless $M(\overline{Y})$ contains $M(K_5)$ as a submatroid. But then Proposition 4.10 would imply that \overline{Y} would contain one of the signed graphs of Figure 5 as a subgraph. But then $\Sigma = \overline{Y} \oplus_3 G$ would have a negative loop, a contradiction of tangledness.

Also, since $|V(\overline{Y})| = 4$ and $M(\overline{Y})$ is not graphic, it must be that $M(\overline{Y})$ contains $M'(K_{3,3})$ as a submatroid. Thus $M(\overline{Y}) = M'(H)$, where H is a decontraction of $K_{3,3}$; that is, H is a subdivision of $K_{3,3}$. Note that any 3-edge bond T of H contains three links from three incident branches of H. Using Whitney 2-isomorphisms we can then assume that T is the set of links incident to a 3-valent vertex of H.

Now since $|V(G)| = 5$ it must be that G is planar unless G contains a K_5 subgraph. However, G contains no more than 9 edges because $|E(\overline{Y})| \geq 9$ and $|E(\Sigma)| = 12$. Now let a, b, and c be the vertices of G along which the 3-sum with \overline{Y} is taken, and let x and y be the remaining two vertices of G. Either x and y are adjacent or not. Let these be Cases 1 and 2, respectively.

Case 1. If x and y are adjacent, then since $|E(G)| \leq 9$ we can assume that the simplification of G is contained in $K_5 \setminus e$ where without loss of generality e is the xa-link. Now, if T is the edge set of the triangle in $K_5 \setminus e$ on vertices a, b, c, then $K_5 \setminus e$ is planar and the planar dual graph $(K_5 \setminus e)^*$ has T as a vertex bond. So now R_{12} is contained in the parallel connection of $M'(H)$ and $M'(K_5 \setminus e)$ along a 3-valent vertex in each term. By Proposition 2.12, this parallel connection and then R_{12} are both cographic, a contradiction.

Case 2. If x and y are not adjacent, then since Σ is vertically 3-connected, each of x and y is adjacent to all of $a, b,$ and c. Thus G simplifies to $K_5 \setminus e$ where x and y are the 3-valent vertices. So we have that $|E(G)| \geq 9$ and so, since $|E(\overline{Y})| \geq 9$, we get that $|E(G)| = |E(\overline{Y})| = 9$ and so $M(\overline{Y}) \cong M'(K_{3,3})$ and $G = K_5 \setminus e$. Thus $\overline{Y} \cong \Sigma_{3,3}$ by Proposition 4.6 and so $\Sigma = \overline{Y} \oplus_3 G \cong \Sigma_{12}$. □

Proposition 4.11. R^*_1 has exactly one triangle A and $R^*_1/A \cong M(K_{3,4})$.

Proof. R^*_1 is obtained from a $Y \Delta$ switch of $M(G_1)$ along the 3-edge bond T. So now $R^*_1 = M(G_1) \Delta M(K_4)$. Let P be the prism graph that consists of two vertex-disjoint triangles joined by three links. Thus $G_1 = (K_5 \setminus e) \oplus_3 P \oplus_3 (K_5 \setminus e)$, and so

$$R^*_1 = M(K_5 \setminus e) \oplus_3 (M(P) \Delta M(K_4)) \oplus_3 M(K_5 \setminus e).$$
Now $M(P) \triangle M(K_4) = M^*(K_{3,3})$ because

$$(M(P) \triangle M(K_4))^* = M^*(P) \triangle M^*(K_4) = M(K_5 \backslash e) \triangle M^*(K_4) = M(K_{3,3}),$$

and so

$$R_{15}^* = M(K_5 \backslash e) \oplus_3 M^*(K_{3,3}) \oplus_3 M(K_5 \backslash e).$$

Using signed-graphic 3-sums and the signed graph $\Sigma_{3,3}$ in Figure 4, we get that the signed graph in Figure 6(a), say Σ, has $M(\Sigma) \sim R_{15}^*$.

By inspection we see that there is only one triangle A in $M(\Sigma) \sim R_{15}^*$. Now $R_{15}^*/A = M(\Sigma)/A = M(\Sigma/A)$, and Σ/A is the signed graph in Figure 6(b). The graph G_v from Proposition 2.6 obtained from Σ/A is $K_{3,4}$, and so $M(\Sigma/A) = M(K_{3,4})$.

Proof of Proposition 4.1. Suppose that $R_{15} = M(\Sigma)$, where Σ has no isolated vertices. Since R_{15} is 3-connected and is neither graphic nor cographic (Proposition 4.5), R_{15} contains an R_{12}-minor by [10, (7.4) and (14.2)]. Thus Σ contains a Σ_{12} minor by Proposition 4.7. So since R_{15} and R_{12} are both 3-connected, there are three edges c,d,e in Σ such that $\Sigma_{12} \cong \Sigma/c \backslash d \backslash e$.

Consider the labelling of the vertices of $\Sigma/c \backslash d \backslash e \cong \Sigma_{12}$ in Figure 7. Since Σ must be vertically 3-connected (by Theorem 2.5), Σ has minimum degree three.

Claim 1. Σ has minimum degree four.

Proof of Claim. Since Σ is vertically 3-connected and has no balancing vertex, the edges incident to any vertex v form a cocircuit of $M(\Sigma)$. So Proposition 4.11 implies that Σ has at most one 3-valent vertex. So, by way of contradiction say that v is a 3-valent vertex of
The Regular Excluded Minors for Signed-Graphic Matroids

Figure 8.

Σ. Thus the 3-edge set A in Proposition 4.11 is the collection of edges incident to v and so $M^*(K_{3,4}) \cong R_{15} \setminus A = M(\Sigma \setminus v)$. Since $K_{3,4}$ is non-planar, it follows from [12, Theorem 3] that $\Sigma \setminus v$ is the projective-planar dual signed graph of some embedding of $K_{3,4}$ in the projective plane. If G is embedded in the projective plane, then the projective-planar dual signed graph of G is (G^*, σ), where G^* is the topological dual graph of G and σ is a signing such that a circle C in G^* is positive if and only if C bounds a disk in the projective plane. Up to isomorphism of $K_{3,4}$, the only embedding $K_{3,4}$ in the projective plane is that shown in Figure 8, and thus $\Sigma \setminus v$ is isomorphic to the signed graph in Figure 8.

Note that $\Sigma \setminus v$ is vertically 4-connected. Now since R_{15} is neither graphic, cographic, nor R_{10}, Proposition 4.8 implies that Σ has a 3-separation (A, B) in which $\Sigma : B$ is balanced with at least five vertices. Since $\Sigma \setminus v$ is vertically 4-connected, we must then have that all vertices of $\Sigma \setminus v$ are in $\Sigma : B$. Given this, it is easily seen that no such 3-separation exists, a contradiction.

Given Claim 1, the 3-valent vertices x and y in $\Sigma/c \setminus e$ must have degree at least four in Σ/c. Now since $M(\Sigma)$ is 3-connected, $M(\Sigma/c)$ is 2-connected, regular, and contains an R_{12}-minor. Thus Σ/c is tangled and loopless. Thus d and e are both links in Σ/c and, since $r(\Sigma/c) = 6$, Σ/c has the six vertices as in Figure 7. Without loss of generality say that d is incident to x in Σ/c. It cannot be that d is a positive link between x and y, because otherwise Σ/c would contain a K_5 minor, which would make $M(\Sigma) = R_{15} = M^*(H_1) \oplus_3 M^*(K_{3,3})$ contain an $M(K_5)$ minor and then Proposition 4.9 would imply that one of the cographic matroids $M^*(H_1)$ and $M^*(K_{3,3})$ contains an $M(K_5)$ minor, a contradiction. Furthermore, it cannot be that d is a negative link between x and y, because then Σ/c contains two vertex-disjoint negative circles, a contradiction of tangledness. Also, it cannot be that d is a link from x to z of either sign, because again we would have two vertex-disjoint negative circles. Finally, it cannot be that d is a negative link from x to a vertex in $\{l, m, n\}$, because we would again have two vertex-disjoint negative circles. Thus d is a positive link from x to a vertex in $\{l, m, n\}$. Similarly e must be a positive link from y to a vertex in $\{l, m, n\}$. Since $M(\Sigma)$ has no parallel elements, the end-points of d and e in $\{l, m, n\}$ are the same. Now, in decontracting c to obtain Σ, we cannot leave parallel edges of the same sign and every vertex must have degree at least four (Claim 1), making the only possibilities for Σ those given in Figure 9. (Using symmetries including switching at z, flipping horizontally, and permuting the end-points of c, the reader can verify that
these are indeed all of the possibilities for Σ.) In all of these signed graphs, there are two vertex-disjoint negative circles, a contradiction. □

Proof of Proposition 4.2. We show that R_{15}/e and R_{15}/e are both signed-graphic for any $e \in R_{15}$. By symmetry there are two cases to check: when e is in one of the copies of $K_{2,3}$ of G_1, and when e is obtained from the ΔY-exchange on G_1. In the former case, G_1/e and G_1/e are both projective-planar. Thus $M^*(G_1/e)$ and $M^*(G_1/e)$ are both signed-graphic by Theorem 1.4, and so $R_{15}/e = M^*(G_1/e)\triangle M(K_4)$ and $R_{15}/e = M^*(G_1/e)\triangle M(K_4)$ are both signed-graphic by Proposition 2.11. In the latter case, $R_{15}/e = M^*(G_1)\triangle M(K_4/e)$ is a 1-edge deletion of $M^*(G_1)$ and $R_{15}/e = M^*(G_1)\triangle M(K_4/e)$ is a subdivision of a 2-edge deletion of $M^*(G_1)$, and so both are signed-graphic by Theorem 1.4. □

Proposition 4.12. R_{16}^* has no triangles.

Proof. Let $-W_5$ be the signed graph in Figure 10(a). In [20, Proposition 4A] it is shown that $M(-W_5) = M^*(K_5)$. Since $R_{16} = M^*(K_{3,3}) \oplus_3 M(K_5) \oplus_3 M^*(K_{3,3})$, we can switch edges as necessary and use Proposition 2.12 to get that the signed graph in Figure 10(b), say Υ, satisfies $M(\Upsilon) = R_{16}^*$. Evidently $M(\Upsilon)$ has no triangles. □
Define the matroid $R_{13} = M^*(K_{3,3}) \oplus_3 M(K_5)$ and the signed graph Σ_{13} to be $\Sigma_{12} \cup e$ in which Σ_{12} is as shown in Figure 7 and e is a positive xy-link. Proposition 4.13 can be deduced from Propositions 4.7 and 4.9.

Proposition 4.13. If Σ is a signed graph without isolated vertices, then $M(\Sigma) \cong R_{13}$ if and only if $\Sigma \cong \Sigma_{13}$.

Proof of Proposition 4.3. Say that $R_{16} = M(\Sigma)$, where Σ has no isolated vertices. Since Σ must be vertically 3-connected (Theorem 2.5) and has no balancing vertex (Theorem 2.4), the set of edges incident to any vertex is a cocircuit of $M(\Sigma)$. So, since R_{16} has no triangles (Proposition 4.12), Σ has minimum degree at least four. Since the number of edges in Σ is 16, Σ must then be 4-regular.

Since $R_{16} = M^*(K_{3,3}) \oplus_3 M(K_5) \oplus_3 M^*(K_{3,3})$ has an $R_{13} = M^*(K_{3,3}) \oplus_3 M(K_5)$ minor, Σ must have a Σ_{13} minor by Proposition 4.13. Thus there are edges c_1,c_2,d such that $\Sigma_{13} \cong \Sigma/c_1/c_2/d$. Since Σ is 4-regular, the degree sequence of Σ/c_1 is 4/4/4/4/4/4/6, and so the degree sequence for $\Sigma/c_1/c_2$ is either 4/4/4/4/4/6/6 or 4/4/4/4/4/8. Let these be Cases 1 and 2, respectively. In each case use the labelling of $\Sigma/c_1/c_2/d \cong \Sigma_{13}$ in Figure 7. Note that the degree sequence of $\Sigma/c_1/c_2/d$ is 4/4/4/4/4/6.

Case 1. Here d must be a loop on one of the 6-valent vertices of $\Sigma/c_1/c_2$, say vertex v, and that loop must be positive by Proposition 2.2. Without loss of generality, decontracting c_1 splits v and decontracting c_2 splits the other 6-valent vertex of $\Sigma/c_1/c_2$. However, then c_1 and d will be parallel positive links in Σ, a contradiction of the 3-connectedness of $M(\Sigma)$.

Case 2. Here d is a loop on the 8-valent vertex of $\Sigma/c_1/c_2$, say v, and by Proposition 2.2, d is positive. So now decontracting c_1 and c_2 each splits v, and so the only possibilities for Σ are as shown in Figure 11.

All of these signed graphs except Figure 11(m) have two vertex-disjoint negative circles. The vertex-disjoint negative circles are easily seen in all of cases except perhaps the last two, where we have marked one negative quadrilateral using x and the other negative quadrilateral is unmarked. Thus Σ is the signed graph of Figure 11(m). Note that $\Sigma = Y \oplus_3 K_5$, where Y is the signed graph of Figure 8 satisfying $M(Y) = M^*(K_{3,4})$. Thus $R_{16} \cong M(\Sigma) \cong M^*(K_{3,4}) \oplus_3 M(K_5)$; however, $R_{16} = M^*(K_{3,3}) \oplus_3 M(K_5) \oplus_3 M^*(K_{3,3})$, as defined. As in the proof of Proposition 4.12, the signed graph of Figure 10(b), say Y_1, satisfies $M^*(Y_1) \cong M^*(K_{3,3}) \oplus_3 M(K_5) \oplus_3 M^*(K_{3,3})$. In a similar fashion, the signed graph in Figure 10(c), say Y_2, satisfies $M^*(Y_2) \cong M^*(K_{3,4}) \oplus_3 M(K_5)$. Thus $M(Y_1) \cong M(Y_2)$.

Claim 1. If the negative edges of a signed graph Ω form a triangle, then $M(\Omega)$ is graphic.

Proof of Claim. Let G be the ordinary graph obtained from Ω by replacing the all-negative triangle with a triad on the same vertices. It is easy to check that $M(G) \cong M(\Omega)$.

Claim 2. Y_1 has exactly four vertex-deleted subgraphs whose matroids are not graphic and Y_2 has exactly three vertex-deleted subgraphs whose matroids are not graphic.
Proof of Claim. For \mathcal{Y}_1, if v is one of its four 3-valent vertices, then $M(\mathcal{Y}_1 \setminus v)$ is not graphic because it contains a $M(-W_5) = M^*(K_5)$ submatroid. If w is any other vertex of \mathcal{Y}_1, then either $\mathcal{Y}_1 \setminus w$ has a balancing vertex or the negative edges of $\mathcal{Y}_1 \setminus w$ form a triangle. In either case $M(\mathcal{Y}_1 \setminus w)$ is graphic by Claim 1 and Proposition 2.6.

For \mathcal{Y}_2, if v is one of the three 3-valent vertices in the upper left, then $M(\mathcal{Y}_2 \setminus v)$ is not graphic because it contains a $M(-W_5) = M^*(K_5)$ submatroid. If w is any other vertex of \mathcal{Y}_2, then $M(\mathcal{Y}_2 \setminus w)$ is graphic because either $\mathcal{Y}_2 \setminus w$ has a balancing vertex or the negative edges of $\mathcal{Y}_2 \setminus w$ form a triangle after switching.

Given the form of the rank function of a signed-graphic matroid $M(\mathcal{Y})$, a cocircuit is a disjoint union $S \cup B$, where S is a set of edges separating $\mathcal{Y}:X$ from $\mathcal{Y}:Y$ and B is a minimal balancing set of $\mathcal{Y}:X$. Thus a connected hyperplane of $M(\mathcal{Y})$ is the complement of $S \cup B$ only if either $S = \emptyset$ or $\mathcal{Y}:X$ has only one vertex. That is when $S \cup B$ is a minimal
balancing set of \(\Upsilon \), or \(S \cup B \) is the collection of edges incident to a single vertex and that vertex is not a balancing vertex. So by Claim 2, \(M(\Upsilon_1) \) has exactly four connected non-graphic hyperplanes and \(M(\Upsilon_2) \) has exactly three connected non-graphic hyperplanes. Thus \(M(\Upsilon_1) \not\cong M(\Upsilon_2) \), a contradiction. \(\square \)

Proof of Proposition 4.4. We show that \(R_{16}\setminus e \) and \(R_{16}/e \) are both signed-graphic for any \(e \in R_{16} \). By symmetry there are two cases to check: \(e \) is an element of one of the two \(M^*(K_{3,3}) \) terms and \(e \) is an element of the \(M(K_5) \) term. In the former case \(M^*(K_{3,3}\setminus e) \) and \(M^*(K_{3,3}/e) \) are both graphic. So since \(M(K_5) \oplus_3 M^*(K_{3,3}) \cong M(\Sigma_{13}) \), we get that \(R_{16}\setminus e = M^*(K_{3,3}/e) \oplus_3 M(\Sigma_{13}) \) and \(R_{16}/e = M^*(K_{3,3}\setminus e) \oplus_3 M(\Sigma_{13}) \) are both signed-graphic by Proposition 2.11.

In the latter case, \(K_5\setminus e \) is planar and neither of the two triangles along which the 3-sums are taken is the separating triangle of \(K_5\setminus e \). Thus \(M^*(K_{3,3}) \oplus_3 M(K_5\setminus e) = M^*(K_{3,3}) \oplus_3 M^*(P) \), where \(P = (K_5\setminus e)^* \) is the triangular prism and where the 3-sum is along a triad in each term. Thus \(M^*(K_{3,3}) \oplus_3 M^*(P) \) is the cographic matroid as given in Proposition 2.12. So now, by Proposition 2.12, \(R_{16}\setminus e = M^*(K_{3,3}) \oplus_3 M^*(P) \oplus_3 M^*(K_{3,3}) \) is the cographic matroid of the graph in Figure 12(a). One can check that this graph is projective-planar and so \(R_{16}\setminus e \) is signed-graphic by Theorem 1.4. By a similar argument \(R_{16}/e \) is the cographic matroid of the graph in Figure 12(b) and that graph is projective-planar. Thus \(R_{16}/e \) is signed-graphic by Theorem 1.4. \(\square \)

5. Lemmas for Section 6

5.1. Lemmas on graphs with \(K_{3,3} \) minors

Lemma 5.1 (Truemper [16, 10.3.9]). Let \(G \) be a graph containing a \(K_{3,3} \) minor such that \(M(G) \) is 3-connected.

1. If \(G \) contains a triangle with edge set \(\{e_1,e_2,e_3\} \), then \(G \) has one of the graphs in Figure 13 as a minor, where \(\{e_1,e_2,e_3\} \) is shown in bold.
2. If \(G \) has a vertex \(v \) of degree 3, then \(G \) contains a subdivision of \(K_{3,3} \) that uses \(v \) as one of its branch vertices.

Lemma 5.2. Let \(G \) be a graph with a \(K_{3,3} \) minor such that \(M(G) \) is 3-connected. If \(G \) contains a 3-edge matching \(T \) that is also a bond of \(G \), then \(G \) has an \(H_1 \) minor (see Figure 3) in which \(T \) is the 3-edge bond in \(H_1 \) that separates the triangle and the copy of \(K_{2,3} \).
Figure 13.

Proof. Since \(M(G) \) is 3-connected, we can partition \(E(G) \) into \(A, T, B \), where \(A \) and \(B \) are the edge sets of two components of \(G \setminus T \). Now if \(H \) is a subdivision of \(K_{3,3} \) in \(G \), then since \(H \) is vertically 2-connected \(H \) either uses all the edges of \(T \), two edges of \(T \), or no edges of \(T \). In the first case, without loss of generality, one branch vertex of \(H \) is contained in \(G \) and the rest of the branch vertices of \(H \) are contained in \(G \). In the second case, without loss of generality, \(H \) is either uses all the edges of \(T \), two edges of \(T \), or no edges of \(T \). In all three cases, \(G/A \) contains \(H/A \) and \(H/A \) is a subdivision of \(K_{3,3} \). Also, one may show that \(M(G/A) \) is 3-connected. Now let \(v \) be the vertex of \(G/A \) obtained by coalescing the vertices of \(A \). Evidently \(v \) has degree 3 in \(G/A \) and the edges incident to \(v \) are the edges of \(T \). Now, by Lemma 5.1, there is a subdivision \(\tilde{H} \) of \(K_{3,3} \) in \(G/A \) that has \(v \) as one of its 3-valent vertices. We can now split the vertex \(v \) to obtain an \(H_1 \) minor containing \(T \) as a 3-edge matching.

Lemma 5.3. Let \(G \) be a graph such that \(M(G) \) is 3-connected and \(G \) contains a \(K_{3,3} \) minor, a triangle \(T \) on edges \(\{e_1, e_2, e_3\} \), and a 3-valent vertex \(v \) not in \(T \). Then \(G \) has one of the following:

1. a vertical 3-separation \((A, B) \) with \(v \in V(A) \setminus V(B) \), \(V(T) \subseteq V(A) \), and \(|V(B)| \geq 5 \), or
2. one of the graphs in Figure 13 as a minor, where \(\{e_1, e_2, e_3\} \) is shown in bold and \(v \) is a 3-valent vertex not incident to \(\{e_1, e_2, e_3\} \).

Proof. By Lemma 5.1, there is a subdivision \(H \) of \(K_{3,3} \) in \(G \) that has \(v \) as a branch vertex. By Proposition 2.1 we can again choose \(H \) so that it has no local bridges and still contains \(v \) as a branch vertex. In this proof we will use the drawing and labelling of \(H \) shown in Figure 14. All edges in Figure 14 represent paths in \(H \) except those edges incident to \(v \) which are actual edges in \(H \). The cross-hatched edges represent paths in \(H \) that may have length zero. We use the terms ‘above’ and ‘below’ with respect to Figure 14.

Now, either all vertices of \(T \) are in \(H \) or all vertices of \(T \) are in the same \(H \)-bridge, say \(B_T \). If all vertices of \(T \) are in \(H \), then say that \(B_T = \emptyset \). Let \(A_T \) be the collection of attachments of \(B_T \), or if \(B_T = \emptyset \) then let \(A_T = V(T) \).

Claim 1. If \(A_T \) has a vertex above \(\{a, b, c\} \), then \(H \cup B_T \cup T \) contains a minor that satisfies part (2).

Proof of Claim. Since \(M(G) \) is 3-connected and \(A_T \) has a vertex above \(\{a, b, c\} \), we can choose a 3-element subset \(A \) of \(A_T \) such that: \(A \) contains \(V(T) \cap V(H) \), \(A \) contains
3 − |V(T) ∩ V(H)| other vertices chosen from among the attachments of BT, and A has at least one vertex above \{a, b, c\}. Note that if \(A = A_T = V(T) \), then not all vertices of T are on the same branch of H, because otherwise there is an edge of T that is a local 2-bridge of H, a contradiction. Also, since H has no local bridges, when \(|V(T) ∩ V(H)| < 3\) we can choose A so that not all of its vertices are on the same branch of H.

Since \(M(G) \) is 3-connected, we can use Menger’s theorem to obtain disjoint paths \(γ_1, γ_2, γ_3 \) in \(BT \) connecting \(V(T) \) to A. Now let \(\hat{H} \) be the graph obtained from \(H \cup T \cup γ_1 \cup γ_2 \cup γ_3 \) by contracting the edges of \(γ_1 \cup γ_2 \cup γ_3 \). That is, \(\hat{H} \) is obtained from \(H \) by placing the triangle T on the vertices in A. Now either there are two vertices of A on the same cross-hatched path in H or not. If not, then there exists \(C \subseteq E(H) \setminus E(T) \) such that \(\hat{H} / C \) is a subdivision \(H' \) of \(K_{3,3} \) along with the triangle \(T' = (\hat{H} / C) \cdot \{e_1, e_2, e_3\} \), where all three vertices of \(T' \) are branch vertices of \(H' \) other than v. We now have a minor, satisfying part (2) in \(\hat{H} / C \). In the former case, since the third vertex of A must then lie above \{a, b, c\}, there exist \(C \) and \(D \subseteq E(H) \setminus E(T) \) such that \(\hat{H} / C \setminus D \) is the graph in Figure 15, where \(e_1, e_2, e_3 \) are shown in bold.

In \(\hat{H} / C \setminus D \), if we contract the edge \(e' \), then we obtain a minor isomorphic to the graph in Figure 13(b), which satisfies part (2) of our conclusion.

Now if \(A_T \) has a vertex above \{a, b, c\}, then we are done by Claim 1. So suppose that all vertices of \(A_T \) are at and below \{a, b, c\}. Now rechoose H such that the total of the
lengths of the cross-hatched paths is a minimum and all vertices of AT are at and below \(\{a, b, c\} \).

Let $H_0 = H \cup B_T \cup T$ and note that an H_0-bridge in G is just an H-bridge that is not B_T and not an edge of T. Let B be the collection of H_0-bridges with attachments above $\{a, b, c\}$. If $B = \emptyset$, then we have a 3-separation of G at $\{a, b, c\}$ satisfying part (1). Otherwise let V be the subgraph of H consisting of v along with the three paths from v to $\{a, b, c\}$. Let $d' = a$, or if there is a bridge in B with an attachment on the va-path of V below a, then let d' be the lowest such attachment. Since v has degree 3 in G, $d' \neq v$. Define b' and c' similarly. If $\{d', b', c'\} = \{a, b, c\}$, then again there is a 3-separation of G at $\{a, b, c\}$ satisfying part (1). If not, then we get that V' is a proper subgraph of V, where V' is the subgraph of V consisting v along with the three paths from v to $\{d', b', c'\}$. We will now show that there is a subdivision H' of $K_{3,3}$ that contains V' and V, and whose branch vertices include v, a, b, c'. After we have obtained H', given that V' is a proper subgraph of V and $AT \subseteq V \subset H'$, we will get that the sum of the lengths of the cross-hatched paths of H' is less than that sum for H. Hence there is a vertex of AT above $\{d', b', c'\}$ in H' and so we are done by Claim 1.

Now either there is an H_0-bridge in B that contains $\{d', b', c'\}$, there is an H_0-bridge in B that contains two elements from $\{d', b', c'\}$ and no bridge contains all three, or all H_0-bridges in B contain at most one vertex from $\{d', b', c'\}$. In each case let z be the ad'-path on V, let β be the bb'-path on V, let χ be the cc'-path on V, let Y be the subgraph of H consisting of y along with the three paths from y to $\{a, b, c\}$, and let Z be the subgraph of H consisting of z along with the three paths from z to $\{a, b, c\}$. We will call a subdivision of $K_{1,3}$ a subdivided triad.

In the first case, let Y' be a subdivided triad in this bridge that has d', b', c' as leaf vertices (which must exist because $M(G)$ is 3-connected) and let $Z' = Z \cup z \cup \beta \cup \chi$, and we have that $H' = V' \cup Y' \cup Z'$ is a subdivision of $K_{3,3}$ that contains V' and V and whose branch vertices include v, a, b', c'. In the second case, without loss of generality, say that $B \in B$ contains d' and b', and that either $c' = c$ or $c' \neq c$ and there exists $C \in B$ that contains c'. By the definition of B, B has an attachment on H above $\{a, b, c\}$ and similarly for C. Assume without loss of generality that the attachment for B is on Y. Now if $c' = c$ or the attachment for C is also on Y, then there is a subdivided triad Y'' in $Y \cup B \cup C$ which has its 3-valent vertex in the interior of B, has leaf vertices a, b', c', and intersects $z \cup \beta \cup \chi$ at $\{d', b', c'\}$ only. So now let $Z' = Z \cup z \cup \beta \cup \chi$, and we have that $H' = V' \cup Y'' \cup Z'$ is a subdivision of $K_{3,3}$ that contains V' and V and whose branch vertices include v, a, b', c'. If $c \neq c'$ and the attachment for C is on Z, then there is a subdivided triad Y' in $Y \cup B \cup C$ which has its 3-valent vertex in the interior of B, has leaf vertices a, b', c', contains all of χ, and intersects $z \cup \beta$ at $\{a, b'\}$ only. Also there is a subdivided triad Z' in $Z \cup C \cup z \cup \beta$ which has 3-valent vertex in $C \cup Z$, whose leaf vertices are a, b', c', contains $z \cup \beta$, and intersects χ at c' only. We again have that $H' = V' \cup Y' \cup Z'$ is a subdivision of $K_{3,3}$ that contains V' and V and whose branch vertices include v, a, b', c'.

In the third case, either there is a bridge $B_a \in B$ that contains d', or $d' = a$. We have a similar property for each of b' and c'. Our desired conclusion follows in much the same fashion as in the previous paragraph.\qed
5.2. Other lemmas

Theorem 5.4 (Hall [5]). If $M(G)$ is 3-connected and G contains a K_5 minor, then either $G \cong K_5$ (possibly along with some isolated vertices) or G contains a $K_{3,3}$-subdivision.

It is almost true that each M_i is 3-connected when $M_1 \oplus_3 M_2$ is 3-connected, the sole exception being some parallel elements along the triangle of summation (Proposition 5.5). Thus we can say that each $s_i(M_i)$ (i.e., the simplification of M_i) is 3-connected when $M_1 \oplus_3 M_2$ is 3-connected.

Proposition 5.5 (Seymour [10, (4.3)]). If $M_1 \oplus_3 M_2$ is 3-connected and T is the triangle along which the 3-sum is taken, then each M_i is 3-connected save perhaps for some elements parallel to elements of T.

Lemma 5.6. If $M_1 \oplus_3 M_2$ is 3-connected and each M_i is cographic and not graphic, then either $M_1 \oplus_3 M_2$ is cographic or $M_1 \oplus_3 M_2$ has an R_{15}-minor.

Proof. Let $M_i = M^*(G_i)$ and say T is the triangle along which the 3-sum is taken. Since $s_i(M_i)$ is 3-connected we can say that G_i is a subdivision of a vertically 3-connected simple graph. Let \hat{G}_i be obtained from G_i by suppressing vertices of degree 2. Thus any 3-edge bond in \hat{G}_i is either a vertex bond or a matching. Any series pair of edges in G_i contains at most one edge from T, and so in suppressing vertices of degree 2 we need not contract any elements of T, and T will still be a 3-edge bond of \hat{G}_i. Thus $\hat{G}_i:T$ is either a vertex bond or a matching. In the case that $\hat{G}_i:T$ is a vertex bond, $G_i:T$ is a vertex bond after some possible switching of series pairs of edges, and in the case that $\hat{G}_i:T$ is a matching, $G_i:T$ is a matching.

Since $M^*(\hat{G}_i)$ is 3-connected and not graphic, Theorem 5.4 implies that $\hat{G}_i \cong K_5$ or G_i has a $K_{3,3}$-minor. Since $M^*(\hat{G}_i)$ has a triangle T, we must have the $K_{3,3}$-minor. Now if $G_i:T$ is a vertex bond, then Lemma 5.1 yields a $K_{3,3}$-minor of G_i with T as a vertex bond, and if $G_i:T$ is a matching, then Lemma 5.2 yields a H_1-minor of G_i with T as the matching bond. Now if $G_1:T$ and $G_2:T$ are both vertex bonds, then $M_1 \oplus_3 M_2$ is cographic by Proposition 2.12, and if, say, $G_1:T$ is a matching, then $M_1 \oplus_3 M_2$ contains $M^*(H_1) \oplus_3 M^*(K_{3,3}) = R_{15}$ as a minor, as required.

Lemma 5.7. If $M_1 \oplus_3 M_2$ is 3-connected and signed-graphic, and each M_i is cographic and not graphic, then $M_1 \oplus_3 M_2$ is cographic.

Proof. Since $M_1 \oplus_3 M_2$ is signed-graphic it cannot contain an R_{15}-minor by Proposition 4.1. So now Lemma 5.6 implies that $M_1 \oplus_3 M_2$ is cographic.

Lemma 5.8. If M is a 3-connected regular matroid of rank at least 3 that contains a triangle T, then there is a $M(K_4)$-minor of M that contains T.

Proof. Bixby’s theorem (see [16, 3.4.36]) says that, for every element e of M, either the simplification of M/e or the cosimplification of $M\setminus e$ is 3-connected. One can obtain the
desired minor by continually applying this fact to elements outside the closure of T until we reach rank 3. Once rank 3 is reached we have an $M(K_4)$-minor. □

The graph $2K_3$ is K_3 with each edge doubled. Lemma 5.9 follows immediately from Menger’s theorem.

Lemma 5.9. If $M(G)$ is 3-connected save possibly for some parallel edges, and T_1 and T_2 are two triangles in G, then there is an $M(2K_3)$-minor of $M(G)$ containing $T_1 \cup T_2$.

Given a 3-sum $M_1 \oplus_3 (M_2 \oplus_3 M_3)$ we say that M_1 sums into M_2 when the triangle of $M_2 \oplus_3 M_3$ along which the sum with M_1 is taken lies in M_2. Given $M_1 \oplus_3 (M_2 \oplus_3 M_3)$, if the triangle $\{e,f,g\}$ of $M_2 \oplus_3 M_3$ along which the 3-sum with M_1 is taken lies neither in M_2 nor M_3, then without loss of generality $M_2 \cap \{e,f,g\} = \{f,g\}$ and $M_3 \cap \{e,f,g\} = \{e\}$. In this case, however, as long as $|M_3| \geq 8$, we get $(M_2 \cup e) \oplus_3 (M_3 \setminus e) = M_2 \oplus_3 M_3$, and so $M_1 \oplus_3 (M_2 \oplus_3 M_3) = M_1 \oplus_3 (M'_2 \oplus_3 M'_3)$ and M_1 sums into M'_2. In the case that M_1 sums into M_2, we get that $M_1 \oplus_3 (M_2 \oplus_3 M_3) = (M_1 \oplus_3 M_2) \oplus_3 M_3$, where on the right side of the equation M_3 sums into M_2. When we write $M_1 \oplus_3 M_2 \oplus_3 M_3$ we mean $M_1 \oplus_3 (M_2 \oplus_3 M_3)$, where M_1 sums into M_2, and also $(M_1 \oplus_3 M_2) \oplus_3 M_3$, where M_3 sums into M_2. If the triangles T_1 and T_3 of M_2 along which the sums with M_1 and M_3 are taken satisfy $r_{M_2}(T_1 \cup T_3) = 2$, then we say that the three terms are summed along a common line.

Lemma 5.10. If $M_1 \oplus_3 M_2 \oplus_3 M_3$ is 3-connected, M_1 and M_3 are cographic and not graphic, $r(M_2) > 2$, and the three terms are summed along a common line, then $M_1 \oplus_3 M_2 \oplus_3 M_3$ contains an R_{15}-minor.

Proof. Let T_1 and T_3 be the triangles along which the sums $M_1 \oplus_3 M_2$ and $M_2 \oplus_3 M_3$ are taken. As in the proof of Lemma 5.6, for $i \in \{1, 3\}$, M_i has a $M^*(K_{3,3})$-minor that contains T_i. By Lemma 5.8 we can find a K-minor of M_2 containing $T_1 \cup T_3$ where K is $M^*(K_4)$ with the three edges of one triad subdivided and the resulting 6 edges are $T_1 \cup T_3$. So now $M_1 \oplus_3 M_2 \oplus_3 M_3$ has $M^*(K_{3,3}) \oplus_3 K \oplus_3 M^*(K_{3,3})$ as a minor, which by Proposition 2.12 is $M^*(H_1) \oplus_3 M^*(K_{3,3}) = R_{15}$.

Lemma 5.11. If $M = M_1 \oplus_3 M_2 \oplus_3 M_3$ is 3-connected, M_1 and M_3 are cographic and not graphic, and M_2 is graphic, then either:

1. $M_1 \oplus_3 M_2 \oplus_3 M_3$ is cographic,
2. $M_2 = N_1 \oplus_3 N_2$ where M_1 and M_3 sum into N_1 and N_2 is graphic and of rank at least 4, or
3. M contains an R_{15} or R_{16}-minor.

Proof. Let T_1 and T_3 be the triangles along which the sums $M_1 \oplus_3 M_2$ and $M_2 \oplus_3 M_3$ are taken. Let $M_i = M^*(G_i)$ for $i \in \{1, 3\}$ and let $M_2 = M(G_2)$. By Proposition 5.5, $M(G_2)$ is 3-connected except perhaps for some doubled edges with $T_1 \cup T_3$. In Case 1 say that G_2 is planar, and T_1 and T_3 are both facial triangles up to switching of parallel edges. In
Case 2 say that G_2 is non-planar. In Case 3 say that G_2 is planar and, without loss of generality, T_1 is a separating triangle of G_2.

Case 1. If T_1 and T_3 are facial triangles up to switching of parallel edge pairs, then T_1 and T_3 are vertex bonds in the planar dual graph G_2^*. As in the proof of Lemma 5.6, for each $i \in \{1, 3\}$ either $G_i:T_i$ is a vertex bond or a matching. In Case 1.1 say that both $G_1:T_1$ and $G_3:T_3$ are vertex bonds, in Case 1.2 say that $G_1:T_1$ is a vertex bond and $G_3:T_3$ is a matching, and in Case 1.3 both $G_1:T_1$ and $G_3:T_3$ are matchings.

Case 1.1. Here $M_1 \oplus_3 M_2 \oplus_3 M_3 = M^*(G_1) \oplus_3 M^*(G_2^*) \oplus_3 M^*(G_3)$ is cographic by Lemma 2.12.

Case 1.2. Here M_3 has an $M^*(H_1)$-minor as in Lemma 5.2 such that $H_1:T_3$ is a matching and M_1 has a $M^*(K_{3,3})$-minor that contains T_1 as a vertex bond. Using Lemma 5.9 on T_1 and T_3 in $M_2 = M(G_2)$, we then obtain $M^*(H_1) \oplus_3 M^*(K_{3,3}) = R_{15}$ as a minor of $M_1 \oplus_3 M_2 \oplus_3 M_3$.

Case 1.3. Here, for each $i \in \{1, 3\}$, M_i has an $M^*(H_1)$-minor as in Lemma 5.2 such that $H_1:T_i$ is a matching. Thus M_1 has a $M^*(K_{3,3})$-minor in which $H_1:T_1$ is a vertex bond and so $M_1 \oplus_3 M_2 \oplus_3 M_3$ has an R_{15}-minor as in Case 1.2.

Case 2. By Theorem 5.4, G_2 is K_5 perhaps with some edges doubled or G has a $K_{3,3}$-subdivision. Let these be Cases 2.1 and 2.2, respectively.

Case 2.1. Let T_1 and T_3 be the two triangles in K_5 along which the 3-sums with M_1 and M_3 are taken. If $|V(T_1) \cap V(T_3)| = 1$, then $M^*(K_{3,3}) \oplus_3 M(K_5) \oplus_3 M^*(K_{3,3}) = R_{16}$ is a minor of M. If $|V(T_1) \cap V(T_3)| = 3$, then $M_1 \oplus_3 M_2 \oplus_3 M_3$ are summed along a common line, and so by Lemma 5.10 $M_1 \oplus_3 M_2 \oplus_3 M_3$ has an R_{15}-minor. If $|V(T_1) \cap V(T_3)| = 2$, let e be the link of G_2 that connects the two vertices of $T_1 \cup T_3$ not in $T_1 \cap T_3$. Now T_1 and T_3 share the same vertex set in G_2/e and so $M_1 \oplus_3 (M_2/e) \oplus_3 M_3 = (M_1 \oplus_3 M_2 \oplus_3 M_3)/e$ has its three terms summed along a common line, and so by Lemma 5.10, $M_1 \oplus_3 M_2 \oplus_3 M_3$ has an R_{15}-minor.

Case 2.2. Let G' be the graph obtained from G_2 by performing a ΔY switch on T_1. If v is the new 3-valent vertex in G', then v is not on the triangle T_1, and note also that G' still has a $K_{3,3}$ subdivision. Now if part (1) of Lemma 5.3 holds for G', then there is a 3-separation (A, B) of G with T_1 and T_3 in A and $|V(B)| \geq 5$. Thus part (2) of the current lemma holds. If part (2) of Lemma 5.3 holds for G', then one can check that G_2 has a \hat{K} minor that contains $T_1 \cup T_3$, where either \hat{K} is K_5 with some edges doubled, or \hat{K} is K_4 with the edges of one triangle doubled and this doubled triangle is $T_1 \cup T_3$. As in Case 1, we will get that M has either R_{15} or R_{16} as a minor.

Case 3. Let G' be the graph obtained from G_2 by performing a ΔY switch on T_1. Since T_1 is a separating triangle in G_2 and G_2 is planar, we now have that G' contains a $K_{3,3}$-subdivision with the new 3-valent vertex, say v, as one branch vertex. In a similar fashion to Case 2.2, we will get either a 3-separation satisfying part (2) or an R_{15} or R_{16}-minor. □
6. The 3-connected case

Let M be an excluded minor for the class of signed-graphic matroids that is regular and 3-connected. Furthermore, by Theorem 1.3 assume that M is not cographic. Now, by Theorem 1.2 and Proposition 5.5, $M = M_1 \oplus M_2$, where each M_i is regular and signed-graphic and each $si(M_i)$ is 3-connected. By Proposition 2.11 and the minimality of M, neither M_1 nor M_2 is graphic. If we assume that both M_1 and M_2 are cographic and not graphic, then Lemma 5.6 and the fact that M is not cographic imply that M has an R_{15}-minor, and so since M is minimal, $M \cong R_{15}$. So now assume that M cannot be expressed as a 3-sum of two cographic matroids.

Now if we choose M_1 so that $|M_1|$ is minimal, then it must be that M_1 is cographic. Now among all possible choices for M_1 where M_1 is cographic, choose so that $|M_1|$ is maximal. Let T_2 be the triangle along which the sum $M_1 \oplus M_2$ is taken. Now let $k \geq 2$ be the maximum-possible integer such that $M = N_1 \oplus N_2 \oplus \ldots \oplus N_k$, where $N_1 = M_1 \cup T_2 \cup \ldots \cup T_k$, the sum of N_i with N_1 is along triangle T_i, each $r(N_i) > 2$, and $r_{N_1}(T_2 \cup \ldots \cup T_k) = 2$. Note that N_1 is still cographic and that by Proposition 2.11, none of N_1, N_2, \ldots, N_k are graphic. In Case 1 say that some N_i for $i \geq 2$ is cographic, and in Case 2 say none of N_2, \ldots, N_k are cographic.

Case 1. Without loss of generality say that N_2 is cographic. By assumption M is not a 3-sum of two cographic matroids, and so $k \geq 3$. So we have at least three terms summed along a common line with two being cographic and not graphic. So by Lemma 5.10, we have an R_{15}-minor, and by the minimality of M we get $M \cong R_{15}$.

Case 2. Since N_2 is neither graphic nor cographic we can write $N_2 = P_1 \oplus P_2$, where $r(P_1) > 2$, P_1 sums into N_1, and P_2 sums into P_1. However, by the maximality of k, the triangle along which the 3-sum $P_1 \oplus P_2$ is taken, say T_2', must satisfy $r_{P_1}(T_2' \cup T_k) > 2$. Therefore, we can now choose P_1 and P_2 so that $|P_1|$ is minimal, and we must get that P_1 is either graphic or cographic. In Case 2.1 say that P_1 is cographic and not graphic, and in Case 2.2 say that P_1 is graphic.

Case 2.1. In this case we cannot have that $k = 2$, because then $M = (M_1 \oplus P_1) \oplus P_2$ where, by the minimality of M, $M_1 \oplus P_1$ is signed-graphic. So since both M_1 and P_1 are cographic and not graphic, Lemma 5.7 implies that $M_1 \oplus P_1$ is cographic, which contradicts the maximality of M_1. So now that $k \geq 3$ we have that $M_1 \oplus P_1 \oplus N_3$ is a minor of M, and these three terms are summed along a common line, and so Lemma 5.10 implies that M has an R_{15}-minor and so $M \cong R_{15}$.

Case 2.2. Among all possible choices for P_1 and P_2 where P_1 is graphic, choose so that $|P_1|$ is maximal. Now let $m \geq 2$ be the maximum integer such that $N_2 = Q_1 \oplus Q_2 \oplus \ldots \oplus Q_m$, where $Q_1 = P_1 \cup T_2' \cup \ldots \cup T_m'$, the sum of Q_1 with Q_1 is along triangle T'_i, each $r(Q_i) > 2$, and $r_{Q_1}(T_2' \cup \ldots \cup T_m') = 2$. Note that Q_1 is still graphic and, by the maximality of $|P_1|$, none of Q_2, \ldots, Q_m are graphic. In Case 2.2.1 say that at least one of Q_2, \ldots, Q_m is cographic and $k = 2$, in Case 2.2.2 say that at least one of Q_2, \ldots, Q_m is cographic and $k > 2$, and in Case 2.2.3 say that none of Q_2, \ldots, Q_m are cographic.

Case 2.2.1. Without loss of generality say that Q_2 is cographic. Now consider $M_1 \oplus P_1 \oplus Q_2$. Since M_1 and Q_2 are cographic and not graphic we can apply Lemma 5.11.
It cannot be that part (1) holds, because then \(M = M_1 \oplus_3 P_1 \oplus_3 M' \), where \(M_1 \oplus_3 P_1 \) is cographic, contradicting the maximality of \(M_1 \). If part (2) of Lemma 5.11 holds, then \(M = M'' \oplus_3 M(G) \), where \(M'' \) is signed-graphic by the minimality of \(M \), and \(M(G) \) is graphic. But now Lemma 2.11 implies that \(M \) is signed-graphic, a contradiction. Thus \(M \) has an \(R_{15} \) or \(R_{16} \)-minor, and so \(M \cong R_{15} \) or \(R_{16} \).

Case 2.2.2. Without loss of generality say that \(Q_2 \) is cographic. Now consider \((N_1 \oplus_3 N_3 \oplus_3 P_1) \oplus_3 Q_2 \) minus any parallel edges along triangles. Since the terms in \(N_1 \oplus_3 N_3 \oplus_3 P_1 \) are summed along a common line, and since \(Q_2 \) sums into \(P_1 \), which is graphic, we can use Lemma 5.9 to get that \(N_1 \oplus_3 N_3 \oplus_3 Q_2 \) is a 3-connected minor of \(M \), where the three terms are summed along a common line. So now, by Lemma 5.10, we get an \(R_{15} \)-minor of \(N_1 \oplus_3 N_3 \oplus_3 Q_2 \), and so \(M \cong R_{15} \).

Case 2.2.3. Since \(Q_2 \) is neither graphic nor cographic, \(Q_2 = R_1 \oplus_3 R_2 \), where \(r(R_1) > 2 \), \(T_1'' \subseteq R_1 \), and by the maximality of \(M \), the triangle along which the 3-sum is taken, call it \(T_2'' \), satisfies \(r_{Q_2}(T_2'' \cup T_1'') > 2 \). As before, we can choose \(R_1 \) so as to minimize \(|R_1| \), which will then make \(R_1 \) either graphic or cographic. In Case 2.2.3.1 say that \(R_1 \) is cographic and not graphic and \(k = 2 \), in Case 2.2.3.2 say that \(R_1 \) is cographic and not graphic and \(k > 2 \), and Case 2.2.3.3 say that \(R_1 \) is graphic.

Case 2.2.3.1. Consider the minor \(M_1 \oplus_3 P_1 \oplus_3 R_1 \) of \(M \) and we are done, as in Case 2.2.1.

Case 2.2.3.2. Consider the minor \((N_1 \oplus_3 N_3 \oplus_3 P_1) \oplus_3 R_1 \) of \(M \) and we are done, as in Case 2.2.2.

Case 2.2.3.3. Since \(R_1 \) is graphic, we can use Lemma 5.9 on \(R_1 \) to obtain \(N_1'' = Q_1 \oplus_3 Q_3 \oplus_3 \ldots \oplus_3 Q_m \oplus_3 R_2 \) as a minor of \(N_1 = (Q_1 \oplus_3 Q_3 \oplus_3 \ldots \oplus_3 Q_m) \oplus_3 (R_1 \oplus_3 R_2) \), where all terms in the sum for \(N_1'' \) are along a common line. So now \(M'' = N_1 \oplus_3 N_1'' \oplus_3 N_3 \oplus_3 \ldots \oplus_3 N_k \) is a minor of \(M \) and is 3-connected.

Let \(n \geq 1 \) be the largest integer such that \(R_2 = S_1 \oplus_3 \ldots \oplus_3 S_n \), where all terms are summed along a common line parallel to \(T_2'' \) in \(R_2 \) and each \(r(S_i) > 2 \). It cannot be that any \(S_i \) from \(S_1, \ldots, S_n \) is graphic, because then \(M = M' \oplus_3 S_i \) would be signed-graphic by Proposition 2.11 and the minimality of \(M \). So then either there is some \(S_i \) that is cographic or not. In the case that there is some \(S_i \) that is cographic and \(k = 2 \), we get that \(M'' \) has an \(R_{15} \) or \(R_{16} \)-minor in a similar way to Case 2.2.1, and hence \(M \cong R_{15} \) or \(R_{16} \). In the case that some \(S_i \) is cographic and \(k > 2 \), then we get that \(M'' \) has an \(R_{15} \)-minor in a similar way to Case 2.2.2, and hence \(M \cong R_{15} \). In the case that none of \(S_1, \ldots, S_n \) are cographic, we can repeat this process in Case 2.2.3 on \(S_1 \) in \(M'' \). Eventually this process must halt with the conclusion that \(M \cong R_{15} \) or \(R_{16} \).

Acknowledgements

The authors would like to thank Joe Bonin, James Geelen, James Oxley, and Bing Wei for their help in making this paper possible. We also would like to thank the anonymous referee for his very careful and thoughtful reading of the manuscript.
References

