Transfusion of CXCR4-Primed Endothelial Progenitor Cells Reduces Cerebral Ischemic Damage and Promotes Repair in db/db Diabetic Mice

Ji Chen
Wright State University - Main Campus, ji.bihl@wright.edu

Jianying Chen

Shuzhen Chen
Wright State University - Main Campus, shuzhen.chen@wright.edu

Cheng Zhang

Liangqing Zhang

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/ptox

Part of the Chemicals and Drugs Commons, Endocrine System Diseases Commons, and the Endocrinology, Diabetes, and Metabolism Commons

Repository Citation

This Article is brought to you for free and open access by the Pharmacology and Toxicology at CORE Scholar. It has been accepted for inclusion in Pharmacology and Toxicology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Transfusion of CXCR4-Primed Endothelial Progenitor Cells Reduces Ischemic Damage and Promotes Repair in db/db Diabetic Mice

Ji Chen, Jianying Chen, Shuzhen Chen, Cheng Zhang, Liangqing Zhang, Xiang Xiao, Avik Das, Yuhui Zhang, Bin Zhao, Yanfang Chen

Published: November 21, 2012 • DOI: 10.1371/journal.pone.0050105

Abstract

This study investigated the role of stromal cell-derived factor-1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4) axis in ischemic stroke in diabetes. The db/db diabetic and db/+ plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified by real-time PCR in organotypic brain slice cultures and in vivo after middle cerebral artery occlusion (MCAO). In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null) or CXCR4 (Ad-CXCR4) vector for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase inhibitor before transfection. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neovascular density, angiogenesis and neurogenesis were determined. We found: 1) The levels of plasma SDF-1α decreased in db/db mice; 2) The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were significantly higher in Ad-CXCR4 transfected EPCs than in Ad-null EPCs; 3) Ad-CXCR4 vector transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4) Ad-CXCR4 vector transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that CXCR4-primed EPCs have a greater therapeutic potential for ischemic stroke in diabetes than unmodified EPCs do.

Figures

Citation: Chen J, Chen J, Chen S, Zhang C, Zhang L, et al. (2012) Transfusion of CXCR4-Primed Endothelial Progenitor Cells Reduces Ischemic Damage and Promotes Repair in db/db Diabetic Mice. PLoS ONE 7(11): e50105. doi:10.1371/journal.pone.0050105

Editor: Jeffrey K. Harrison, University of Florida, United States of America

Received: August 2, 2012; Accepted: October 19, 2012; Published: November 21, 2012

Copyright: © 2012 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the American Diabetes Association (ADA) (1-10-BS-25, Y.C.), the National Institutes of Health (HL-098637, Y.C. and HL-093567, M.M.), the National Natural Science Foundation of China (NSFC 81070878, 81270264) and the National Key Basic Research Program (973 Program) of China (2011CB808700, 2011CB808703). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.
These authors also contributed equally to this work.

Introduction

Diabetes is a risk factor for stroke, which are the nation's second leading cause of death and the leading cause of long-term cerebral damage is exacerbated and the outcome is poor. The responsible mechanisms might include microvascular and impaired angiogenesis. Endothelial progenitor cells (EPCs) are believed to play an important role in maintaining endothelial integrity and participate in angiogenesis which represents an important endogenous tissue repair mechanism [1], [2]. Accumulating evidence shows that EPCs are reduced in number and impaired in function in diabetic patients and animals [3]–[5]. Studies on ischemic brain, heart and limbs have shown that a combination of SDF-1α/CXCR4 over-expression and stem cell transplantation improves ischemic diseases. SDF-1α pretreatment increases the therapeutic potential of EPC transfection in a mouse model of ischemic stroke in diabetes.

The stromal cell-derived factor-1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4) axis is believed to play an important role in maintaining tissue homeostasis [8]–[10] and triggers many intracellular proliferation and anti-apoptosis signals, such as mitogen-activated protein kinase (PI3K) and the serine/threonine kinase Akt [11]. Therefore, it is a potential target for promoting repair in wounds [12]. Ischemic heart and limbs have shown that a combination of SDF-1α/CXCR4 over-expression and stem cell transplantation improves ischemic diseases. SDF-1α pretreatment increases the therapeutic potential of EPC transfection in a mouse model of ischemic stroke in diabetes [13]. When compared to low-CXCR4-expressing EPCs, administration of high-CXCR4-expressing EPCs is more effective on treating ischemic stroke in db/db mice.

Material and Methods

Animal Experimental Design

Adult male db/db diabetic mice (C57BL6/J) and their age matched (8–10 weeks) controls (db/+) were used for the study. Adult male db/db diabetic mice (C57BL6/J) and their age matched (8–10 weeks) controls (db/+) were used for the study. The general characteristics of db/+ and db/db mice are summarized in Table 1. The db/db mice possess an insulin receptor and subsequently develop obesity, hyperglycemia and insulin resistance resembling adult-onset diabetes mellitus [15]. The level of fasting plasma glucose was measured after 16 hours fasting using the Accu-Chek Monitor (Roche Diagnostic, Indianapolis, IN). All experimental protocols (Figure 1) were approved by the Laboratory Animal Care and Use Committee at Wright State University and Guangdong Medical College in accordance to the Guide for the Care and Use of Laboratory Animals.
Figure 1. Experimental protocols.
The flow diagrams briefly describe the in vitro and in vivo protocols.
doi:10.1371/journal.pone.0050105.g001

Table 1. General Characteristics of db/+ and db/db Mice.
doi:10.1371/journal.pone.0050105.t001

<table>
<thead>
<tr>
<th>Variants</th>
<th>db/+ (n = 34)</th>
<th>db/db (n = 90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (W)</td>
<td>8.2±0.5</td>
<td>8.5±0.4</td>
</tr>
<tr>
<td>B.W. (g)</td>
<td>27.9±0.6</td>
<td>44.8±1.2**</td>
</tr>
<tr>
<td>Blood glucose (mg/dl)</td>
<td>123.6±12.5</td>
<td>421.5±10.4**</td>
</tr>
</tbody>
</table>

Data are means ± SE.
*P<0.05, **P<0.01, compared with db/+. B.W.: Body weight.
doi:10.1371/journal.pone.0050105.001

Protocol one.
For exploring whether SDF-1α/CXCR4 axis is dysregulated in the brain of diabetes (at basal and after ischemic stroke) randomly assigned to middle cerebral artery occlusion (MCAO) or sham surgery group. MCAO surgery was performed we previously described [3], [16]. Mice were euthanized 48 hours after surgery, and the brain tissues were immediately dissected for analysis of SDF-1α and CXCR4 expression. For real-time RT-PCR into 1 ml tubes containing 0.5 ml RNAlater (Qiagen, CA) and cut into small pieces (<0.5 cm³). After overnight, tissues western blot analysis, tissues were immediately harvested into tubes and put on dry ice before they were transferred collected for analysis the level of plasma SDF-1α and circulating CD34+CXCR4+ cells.

Protocol two.
For determining the therapeutic efficacy of Ad-CXCR4 primed EPCs on ischemic stroke in diabetes, bone marrow (BM) EPCs were cultured for 7 days and then transfected with adenovirus (Ad) carrying null (Ad-null-EPCs) or CXCR4 gene transfection. After that, the cells were harvested, c were subjected to MCAO surgery (under anesthesia by inhaling 2.5% isoflurane) and randomly assigned to different treatments, PBS). Ad-null-EPCs and Ad-CXCR4-EPCs. Pain and discomfort were minimized by an initial injection of Bup and another two injections every 12 hours. Mice were injected via the tail vein with EPCs (2×10⁶ cells/100 µl in PBS) or the controls [3], [17]. To label the new generated cells, mice were injected with bromodeoxyuridine (BrdU, 65 µg/g/day, i.p.) immediately harvested as described in Protocol one. For histological analysis (n = 6/group), the ischemic hemisphere were immediately harvested as described in Protocol one. For histological analysis (n = 6/group, 4% paraformaldehyde (PFA). Then, brain tissues were fixed in 4% PFA plus 30% sucrose for 3 days. Fixed brains were cut into four wells for Fluoro-Jade staining analysis of infarct volume, and immunohistological analysis of angiogenesis and neurongenesis.
Enzyme-linked Immunosorbent Assay (ELISA) for SDF-1α

The plasma level of SDF-1α was measured by ELISA methods [19]. Briefly, mouse plasma was collected and detected using the enzyme immunoassay system (MN). Absorbance was read at 450 nm.

Real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR)

The levels of SDF-1α and CXCR4 of the brain tissues were determined using real-time RT-PCR methods [20]. Brain tissue samples were isolated by using a kit (Qiagen, CA) and reverse-transcribed with the high capacity cDNA archive kit (Qiagen). The real-time PCR was performed using primer sequences: CXCR4 (5′-TTT CAG CCA GCA GTT TCC TT-3′ and 5′-TCA GTG GCT GCT GAC CTC CTC TT-3′; St许可GTG-3′ and 5′-AGA GCT GGG CTC CTA CTG TGC GGC CGC GGG-3′). β-actin was chosen for housekeeping expression.

Bone Marrow EPC Culture and Characterization

EPCs were generated from BM mononuclear cells (MNCs) as we previously reported [3], [21]. In brief, BM was flushed from the mouse and mononuclear cells were isolated by using density gradient centrifuge method. BM MNCs isolated from db/+ and db/db mice were counted and seeded on 24-well plates (BD Bioscience, San Jose, CA, USA) and then grown in endothelial cell basal medium-2 (EBM-2) supplemented with growth cytokine cocktail (Lonza, Walkersville, MD, USA). After 3 days in culture, non-adherent cells were removed by replacing the medium every 2 days. EPCs were characterized by double staining with Di-LDL and BS-Lectin, and flow cytometry (CD34 and VEGFR2) on day 7.

Ad-CXCR4 Preparation and Transfection

The Ad-CXCR4 was kindly provided by Dr. Yigang Wang in the Department of Pathology and Experimental Medicine. A fragment of CXCR4 cDNA (MGC-36266) was purchased from ATCC (American Type Culture Collection) and sub-cloned in the BglII and HhaI sites of the shuttle vector pAdTrack-CMV which contains the enhanced green fluorescence protein (EGFP) expression cassette. The identity of the gene confirmed by sequencing was subsequently sub-cloned into the Adenovirus shuttle vector pAdTrack-CMV which contains the enhanced green fluorescence protein (EGFP) expression cassette. The expression of CXCR4 and green fluorescent protein (GFP) under cytomegalovirus (CMV) promoter. EPCs were transfected with Ad-null or Ad-CXCR4. Briefly, EPCs cultured in six-well plates with 75% confluence were incubated with 1×10^6 infectious units of Ad-null or Ad-CXCR4 viruses were removed and the medium was replaced with fresh medium with FCS in the following day. Cells were confluence for harvest. CXCR4 expression in EPCs was confirmed by real-time RT-PCR and western blot. The percentage of CXCR4+ EPCs was calculated as the ratio of CXCR4+ EPCs to the total number of EPCs × 100%.

Colony Forming Unit Counts of EPCs

EPCs from db/+ and db/db mice were cultured in EBM-2 medium and seeded in six-well plates precoated with fibronectin. Cells were removed by washing with PBS and the adherent cells were transfected with Ad-null or Ad-CXCR4 (1×10^7 infectious units per cell per minute transfection), the numbers of colony formation unit (CFU) were counted by visual inspection with an inverted microscope and defined as a central core of round cells with elongated sprouting cells at the periphery, as previously reported [22].

High Glucose Experiments on EPCs

The HG (25 mmol/L) medium which corresponds to 350–450 mg/dl of plasma glucose levels in diabetic patients was used for osmotic control as previous reports [24]–[25]. Ad-null-EPCs or Ad-CXCR4-EPCs were cultured in HG medium supplemented with SDF-1α (100 ng/ml) for 4 days before functional assays. The medium were changed every two days. The level of the culture supernatant was daily monitored by an oxidase-based colorimetric method [27] during the HG experiments pre-incubated with PI3K inhibitor (LY294002, 20 μM, Cell Signaling) or NOS inhibitor (Nω-nitro-arginine methyl ester, L-NAME) for two hours [28].
EPC Migration and Tube Formation Assays

EPC migration and tube formation were evaluated by using Boyden chamber (Chemicon, Rosemont, IL) and tube formation previously described [3]. For migration, EPCs (2×10^4 cells) were placed into upper compartment of the Boyden chamber and 100 ng/ml stromal cell-derived factor-1 (SDF-1) in the lower compartment. Cells migrated across the membrane were counted under an inverted light microscope, quantified and averaged by examining independent fields for each well, and the average number of tubes per field (magnification, ×200) was measured. For tube formation, ECMatrix solution was thawed on ice overnight, mixed with 10×ECMatrix dilutions, and then incubated for one hour to allow the matrix solution to solidify. EPCs were re-plated (1×10^4 cells/well) on top of the matrix, and tube formation was evaluated with an inverted light microscope and defined as a tube structure exhibiting at least three branches. The percentage of apoptosis was determined by flow cytometry as a previous study [3]. Briefly, circulating MNCs were stained with anti-mouse CD34-PE (AbD Serotec, Raleigh, NC) and VEGFR2-PE-Cy7 (BD, Bioscience) antibodies and counted. The level of circulating EPCs and CD34+CXCR4+ cells was expressed as cells/ml blood. Isotype (IgG) antibodies were used as calibration.

EPC Apoptosis Assay

After 4 days' culture in HG medium, EPCs were harvested for apoptosis analysis by using Alexa Fluor 488 annexin V/PI (Invitrogen, Carlsbad, CA). Briefly, cells were resuspended in annexin-binding buffer, and then incubated with annexin V and PI at room temperature (RT). The apoptotic EPCs were recognized as PI−/Annexin V+ cells. The percentage of apoptosis was determined by flow cytometry.

Western Blot Analysis

Gene expression of SDF-1α, CXCR4, eNOS, Akt, p-eNOS or p-Akt of the brain tissue or EPCs was determined [28], [30]. The brain tissue was harvested after the animal was anesthetized with 2.5% isoflurane and placed on a stereotaxic apparatus. An incision was made in the scalp, and the peri-infarct site of ischemic ipsilateral area (2 mm posterior, 6 mm lateral to bregma) and contralateral site (2 mm posterior, 6 mm lateral to bregma) were sequentially determined using a laser Doppler flowmeter (PF2B, Perimed) for each site. The averaged value of CBF for each site. The relative CBF was calculated using the formula: relative CBF = CBF of ipsilateral side/CBF of contralateral side. To minimize variability, the CBF was recorded at each site for at least 5 minutes. The averaged value of CBF for each site. The relative CBF was calculated using the formula: relative CBF = CBF of ipsilateral side/CBF of contralateral side.
performed CBF measurements was unaware of the information of animal grouping.

Measurement of Infarct Volume and Cerebral Microvascular Density

As we previously described [3], [16], cerebral ischemic damage and the cMVD in peri-infarct area were revealed by Fluoro-Jade (0.001%, Histoch, Jefferson, AR, USA) and CD31 (1:50, Invitrogen), respectively. Infarct volume and software (NIH).

Analysis of Angiogenesis and Neurongenesis

Angiogenesis and neurongenesis in peri-infarct area were determined by using double immunofluorescence staining with 31 (endothelial cells, ECs), neuronal nuclei (NeuN), or glial fibrillary acidic protein (GFAP) [18]. Specifically, brain coron (1:50, Abcam, MA, USA), followed by incubation with cell-specific antibodies: CD31 (1:50, BD Biosciences), GFAP (1 overnight at 4°C. Next, brain sections were reacted with FITC (for BrdU) or Cy3 (for cell specific markers) conjugated 30 min at RT in the dark. The labeled ECs (BrdU+CD31+), neurons (BrdU+NeuN+) and glial cells (BrdU+GFAP+) in the counted under 6 random fields (200×). The average of five sections from rostral to caudal represented the data for each counted by an investigator who was unaware of animal grouping.

Statistical Analysis

All data, excepting neurologic deficit scores, are presented as mean ± SE. The neurologic deficit scores were expressed as scores among different groups were compared by the Kruskal–Wallis test. When the Kruskal–Wallis test showed a significant difference, post-hoc analysis was performed by the Tukey’s range test. Multiplicity corrections were applied. For the rest measurements, comparisons for two groups were performed by the student’s t test. Multiplicity corrections were applied. For all tests, a P-value <0.05 was considered significant.

Results

Baseline Characterization of Animals

The characterizations of glucose, age and body weight in db/db and db/+ mice used in this study are presented in Table 2. db/db mice had higher plasma glucose and body weight as compared with age-matched db/+ control mice. In protocol surgery (blood flow <75% of baseline) and randomized to vehicle, Ad-null-EPC or Ad-CXCR4-EPC infusion groups. The blood glucose among different treatment groups (Table 2).

<table>
<thead>
<tr>
<th>Groups</th>
<th>B.W. (g)</th>
<th>Blood glucose (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle, 2 day</td>
<td>48.2±1.1</td>
<td>428.5±10.4</td>
</tr>
<tr>
<td>Vehicle, 7 day</td>
<td>47.9±2.2</td>
<td>425.8±11.2</td>
</tr>
<tr>
<td>Ad-null-EPCs, 2 day</td>
<td>43.6±1.5</td>
<td>421.6±12.4</td>
</tr>
<tr>
<td>Ad-null-EPCs, 7 day</td>
<td>42.2±1.5</td>
<td>418.4±11.8</td>
</tr>
<tr>
<td>Ad-CXCR4-EPCs, 2 day</td>
<td>46.9±1.6</td>
<td>424.8±12.2</td>
</tr>
<tr>
<td>Ad-CXCR4-EPCs, 7 day</td>
<td>46.6±1.1</td>
<td>421.5±12.4</td>
</tr>
</tbody>
</table>

Data are means ± SE, n = 6/group. B.W.: Body weight.

Table 2. Baseline Characteristics of db/db Mice in Different Groups.

doi:10.1371/journal.pone.0050105.t002
The Levels of Plasma SDF-1α and Circulating CD34+CXCR4+ Cells are Reduced in db/db Mice

The level of plasma SDF-1α was significantly lower in db/db mice (1.3±0.14 and 1.8±0.15 pg/ml, P<0.05, db/db vs. db/+). CD34+CXCR4+ cells was reduced in db/db mice (260±14 and 712±42 cells/ml, P<0.01, db/db vs. db/+ mice, n = 9/group).

The Expression of SDF-1α/CXCR4 Axis is Dysregulated in the Brain of db/db Mice at Stroke

At basal, the db/db diabetic mice had less expression of SDF-1α in the brain tissue at both mRNA and protein levels (P=0.05; Figure 2B and D). The levels of brain SDF-1α and CXCR4 in the ischemic hemisphere were up-regulated in both db/db and db/+ mice 48 hours following MCAO (P<0.05 or 0.01). However, the up-regulations of SDF-1α protein bands of SDF-1α and CXCR4. *P<0.05, **P<0.01 vs. sham; # P<0.05 vs. db/+, n = 5/group in mRNA analysis, n = doi:10.1371/journal.pone.0050105.g002

EPC Characterization and CXCR4 Expression in EPCs

BM derived EPCs were defined as cells up-taking Di-LDL and binding with Bs-Lectin, as well as cells expressing CD34 (Figure 3A and B). At the end of EPC culture (7 days), the percentage of CD34+VEGFR2+ EPCs was 89±3.5% (n = 5/group) did not cause any change of the percentage of CXCR4+ EPCs (Day 0 vs. Day 7; P>0.05). The CXCR4+ EPCs

Figure 3. Characterization of bone marrow derived EPCs.

Figure 2. SDF-1α/CXCR4 expression in the brain of db/db mice at basal and in response to ischemia. (A) SDF-1α mRNA expression. (B) CXCR4 mRNA expression. (C) SDF-1α protein expression. (D) CXCR4 protein bands of SDF-1α and CXCR4. *P<0.05, **P<0.01 vs. sham; # P<0.05 vs. db/+, n = 5/group in mRNA analysis, n = doi:10.1371/journal.pone.0050105.g002
Ad-CXCR4 Transfection Increases CXCR4 Expression and Colony Forming Capacity

Real-time PCR and western blot analyses showed that Ad-CXCR4 transfection up-regulated CXCR4 expression in EPCs from db/db mice (P<0.01; Figure 4). Flow cytometric result showed that Ad-CXCR4 transfection significantly increased (P<0.01; Figure 4C). The number of CFUs was decreased in EPCs from db/db mice (P<0.05 or 0.01; Figure 4D). Ad-CXCR4 treatment prevented the effects of Ad-CXCR4 transfection on EPC function and apoptosis (P<0.05 or 0.01), Whereas, NOS inhibitor (L-NAME) (P<0.01; Figure 5).

Ad-CXCR4 Transfection Protects EPCs from HG-induced Dysfunction and Apoptosis

PI3K/Akt/eNOS Signaling Pathway

HG incubation for 4 days significantly decreased the expression of CXCR4 in EPCs from both db/+ and db/db mice (P<0.01; Figure 4A). Incubation also induced down-regulation of p-Akt and p-eNOS and increased the expression of Akt and eNOS in EPCs (Figure 6). Pre-incubation of Ad-CXCR4 transfection on EPCs increased the expression of Akt and eNOS (P<0.01; Figure 6).

Figure 4. CXCR4 expression and colony forming capacity of EPCs.

CXCR4 mRNA expression (A) and protein expression (B) in EPCs after Ad-CXCR4 transfection. (C) Representative pictures showing cultured EPCs by double staining analysis. Red: Di-LDL up-taking; Green: Bs-Lectin positive cells defined as EPCs. Scale bar: 75 µm. (B) Representative flow plot showing expression in EPCs. At the end of EPC culture, cells were stained with CD34 and VEGFR2, and analyzed by flow cytometric result showed that Ad-CXCR4 transfection significantly increased (P<0.01; Figure 4C). The number of CFUs was decreased in EPCs from db/db mice (P<0.05 or 0.01; Figure 4D). Ad-CXCR4 treatment prevented the effects of Ad-CXCR4 transfection on EPC function and apoptosis (P<0.05 or 0.01), Whereas, NOS inhibitor (L-NAME) (P<0.01; Figure 5).
Figure 5. Ad-CXCR4 transfection protects down-regulation of Akt/eNOS activation in EPCs induced by HG
(A) Representative western blot bands showing Akt/eNOS and p-Akt/p-eNOS expression in different treatment groups. Akt and p-Akt, and 140 kDa for eNOS and p-eNOS. (B) Summarized data on Akt/eNOS and p-Akt/p-eNOS expression.*P<0.05, **P<0.01 vs. Ad-null-EPCs; **P<0.01 vs. Con or Osm. Con: control (basal medium); Osm: osmotic control. PI3K: phosphatidylinositol-3-kinase; NOS: nitric oxide synthase. Ad-null; Ad-CXCR4-EPCs: EPCs transfected with Ad-CXCR4.
doi:10.1371/journal.pone.0050105.g005

Figure 6. Ad-CXCR4 transfection protects EPCs from HG-induced dysfunction and apoptosis via activation
Representative tube formation pictures (A1–A8) and summarized data (A9) in different treatment groups. A1: Ad-null-EPCs; A2: Ad-null-EPCs+HG; A3: Ad-null-EPCs+HG+L-NAME; A4: Ad-CXCR4-EPCs+Con; A5: Ad-CXCR4-EPCs+Osm; A6: Ad-CXCR4-EPCs+HG; A7: Ad-CXCR4-EPCs+HG+L-NAME. Scale bar: 600 µm. Summarized data on migration ability (B) and the percentage of migration through 8 µm pores.(C) Summarized data on tube formation. A1: Ad-null-EPCs; A2: Ad-CXCR4-EPCs. *P<0.05, **P<0.01 vs. Ad-null-EPCs or Ad-null-EPCs+Osm; **P<0.01 vs. HG+Ad-null-EPCs; #P<0.05, ##P<0.01 vs. HG+Ad-CXCR4-EPCs+LY294002, n = 6/group. Con: control (basal medium); Osm: osmotic control; HG: high glucose. Ad-null; Ad-CXCR4-EPCs: EPCs transfected with Ad-CXCR4.
doi:10.1371/journal.pone.0050105.g006

Infusion of Ad-CXCR4 Primed EPCs Enhances the Efficacy in Increasing the Level of Expression in the Brain

The db/db mice were treated with EPCs two hours after MCAO surgery. Infusion of Ad-null-EPCs was able to increase the level of circulating EPCs at these time points (P<0.01; Figure 7A). Infusion of Ad-CXCR4 primed EPCs further increased the level of circulating EPCs at these time points. Ad-null-EPCs increased CXCR4 expression in the brain of ischemic side on day 7 (P<0.05) with no significant change in the contralateral hemisphere. Infusion of Ad-CXCR4 primed EPCs was more effective to increase CXCR4 expression in the ischemic hemisphere or
Infusion of Ad-CXCR4 Primed EPCs Enhances the Efficacy in Increasing cMVD in the Damage

Infusion of Ad-null-EPCs was able to increase the cMVD in peri-infarct area in db/db mice (Day 2, $P<0.05$; Day 7, $P<0.01$) transfusion of Ad-CXCR4 primed EPCs could enhance the efficacy ($P<0.01$; Figure 7C and D).

Infusion of Ad-CXCR4 Primed EPCs Enhances the Efficacy in Increasing Relative CBF and Neurologic Deficit Score

In agreement with the findings in cMVD, we also found that Ad-null-EPC transfusion improved the relative CBF of peri-infarct area (Figure 8A) and transfusion of Ad-CXCR4 primed EPCs was more effective (Day 2, $P<0.05$; Day 7, $P<0.01$; Figure 8A) after Ad-null-EPC infusion, and was able to be further decreased after the both day 2 and day 7 ($P<0.01$; Figure 8B). To evaluate the neurologic motor function, we measured neurologic deficit score as early as on day 2 and had better efficacy on day 7 ($P<0.01$; Figure 8C).
Figure 8. Effects of Ad-CXCR4-EPC infusion on CBF, infarct volume and neurologic deficit score in db/db mice. (A) The relative CBF in peri-infarct area in each therapeutic group. (B) The infarct volume in each therapeutic group. *P<0.05, **P<0.01 vs. vehicle; *P<0.05, **P<0.01 vs. Ad-null-EPCs; $P<0.05$ vs. day 2, n = 6/group. Ad-null-EPCs: EPCs transfected with Ad-null; Ad-CXCR4-EPCs: EPCs transfected with Ad-CXCR4.

doi:10.1371/journal.pone.0050105.g008

Infusion of Ad-CXCR4 Primed EPCs Enhances the Efficacy in Promoting Angiogenesis

Figure 9A shows representative pictures of angiogenesis (BrdU+CD31+), glial (BrdU+GFAP+) and neuronal (BrdU+NeuN+) cell genesis after Ad-CXCR4-EPC treatment. Scale bar: 50 µm. Histogram showing the number of BrdU+CD31+ (B), BrdU+NeuN+ (D), and BrdU+GFAP+ (E) cells in the peri-infarct area on day 2 and 7 in different therapeutic groups. *P<0.05, **P<0.01 vs. vehicle; *P<0.05, **P<0.01 vs. vehicle; §P<0.05 vs. day 2, n = 6/group. NeuN: neuronal nuclei; GFAP: glial fibrillary acidic protein; Ad-null-EPCs: EPCs transfected with Ad-null; Ad-CXCR4-EPCs: EPCs transfected with Ad-CXCR4.

doi:10.1371/journal.pone.0050105.g009

Discussion

There are three major findings in this present study. Firstly, we found that the expression of SDF-1α/CXCR4 axis is dy
at basal and in response to ischemic stroke. Secondly, we illustrated that Ad-CXCR4 primed EPCs display resistance through activation of CXCR4 downstream PI3K/Akt/eNOS signal pathway. Thirdly, we demonstrated that infusion of A efficacy in reducing ischemic injury as well as promoting recovery.

The SDF-1α regulates tissue/organ homeostasis through the CXCR4 receptor expressed in hematopoietic progenitors SDF-1α expression is reduced at basal and that ischemia-induced up-regulation of brain SDF-1α and CXCR4 are less first evidence showing the dysregulation of SDF-1α/CXCR4 axis in the brain of an animal model with diabetes. A previ SDF-1α and CXCR4 is up-regulated in the tunica media of the thoracic aortas in streptozotocin-induced type-1 diabetic diabetic models have hyperglycemia, we tentatively attribute this inconsistency to different animal models and/or tissue are supported by other previous reports showing that the SDF-1α/CXCR4 axis is down-regulated in the wounds of db/db model used in our study has hyperglycemia, obesity and dyslipidemia and insulin resistance [15]. Therefore, it deserve besides hyperglycemia can also lead to the impairment of SDF-1α/CXCR4. Our in vitro data showed that HG down-reg suggesting that hyperglycemia per se can impair the SDF-1α/CXCR4 axis [30], [37]. Furthermore, we found that HG i function, and induced EPC apoptosis. Although diabetes is a stage of severe inflammation and oxidative stress, and t mimic the situation in in vivo, our results are supported by the reports from others [30], [23] showing that HG induced data are also in agreement with our previous findings showing lower level of cEPCs and less cerebral microvascular d hyperglycemia should be one of the mechanisms for EPC dysfunction in diabetes. On the other hand, evidence suggests vascular progenitors from the bone marrow [38], [39]. The db/db mice possess an inactivating gene mutation in leptin current findings in db/db mice.

In addition, we found that the levels of plasma SDF-1α and circulating CD34+CXCR4+ cells are reduced in db/db mice diabetic patients [40]. Since the SDF-1α/CXCR4 interaction triggers several intracellular signals including MAPKs, PI3 modulate cell migration, proliferation and apoptosis [11], we investigated the implication of SDF-1α/CXCR4 axis in EP expected, we found that Ad-CXCR4 transfection protects EPCs from HG-induced dysfunction and apoptosis. The und CXCR4 downstream PI3K/Akt/eNOS signal pathway since PI3K or eNOS inhibitor abolishes or partially blocks these agreement with previous observations showing that SDF-1α/CXCR4 interaction mediates EPC migration via Akt and e data suggest that the SDF-1α/CXCR4 axis is impaired at multiple sites (brain and EPCs) in diabetes, which might hav repair (enlarged injury and delayed repair); targeting on the dysfunction of SDF-1α/CXCR4 axis could offer a new ave EPCs have been found to differentiate into ECs and contribute to angiogenic repair [42], [43]. A recent report demons infarct volume in ischemic stroke mice [7]. Yang et al [44] also demonstrated that CD34+ cells could represent a funct beneficial therapeutic effects in myocardial infarction. In patients with diabetes and db/db diabetic mice, circulating EP dysfunctional [3]–[5]. Our previous study demonstrates that transfusion of EPCs from non-diabetic sources has benefi reports by others also suggest that EPCs be useful for therapeutic purposes in diabetes [21], [45]. Because of the m hyperlipemia, etc) changes in diabetes, the efficacy of EPC-based therapy may be limited. This evidence provides a g treating ischemic stroke in diabetes. On the other hand, this evidence suggests the control of metabolic factors in diat efficacy of EPC-based therapy. Here, we conducted in vivo studies to evaluate whether Ad-CXCR4 primed EPCs cou treating ischemic stroke in the db/db diabetic mice. In agreement with previous reports showing transfection of CXCR4 cells has better efficacy than CXCR4 low-expressing cells in treating hindlimb ischemia and myocardial infarction [14], EPCs have better effects over EPCs in alleviating cerebral damage (decreasing the infarct volume, improving neurolo[increasing cMVD, angiogenesis and neurogenesis). Angiogenesis is a vital component of tissue repair processes. EP angiogenesis which represents an important endogenous tissue repair mechanism. The underlying mechanisms of EPC demonstrated. One is that EPCs physically participate in angiogenesis by incorporating and differentiating into mature angiogenic factors promoting the proliferation and survival of resident ECs [6]. In this study, we measured newly gene angiogenesis as commonly used by others [18], [47]. We found that the level of CD31+BrdU+ cells was increased in t more seen after infusion of CXCR4 primed EPCs. Our data demonstrate that CXCR4 over-expressing EPC further inc stroke.

The EPCs are thought to be a mixture of progenitor cells and mononuclear cells. At present, isolation of pure populat characterization of the different types of EPC is currently an open issue with debate [48]. However, the generally acce expression of surface markers including CD34, CD133 and KDR [49]. In this study, we cultured EPCs for 7 days and [41]. We found the percentage of CD34+VEGFR2+ cells was about 88.5%, suggesting most of them are EPCs. Moreover, also important to obtain the high purity EPCs. We isolated BM MNCs by gradient density separation method. BM MNK 24-well plates and grown in endothelial cell basal medium-2 containing EPC growth cytokine cocktails in favor of the p
lines [21], [50]. After 3 days of culture, non-adherent cells were removed by washing with PBS to avoid contamination of the observed effects attributed to the transfused EPCs, rather than the CD45+ mononuclear cells.

Our in vitro EPC culture and in vivo animal studies are in a good agreement for supporting the beneficial effects of Ad-CXCR4 stroke. Firstly, Ad-CXCR4 transfection protects EPCs from HG induced apoptosis resulting in increased levels of circulating EPCs from HG-induced dysfunction (migration and tube formation) and leads to the promotion of angiogenesis in peri-infarct area as early as day 2, whereas transfusion of EPCs shows this effect on day 7 cMVD and relative CBF on day 2 in EPC treatment group. Although the underline mechanism is unclear, we tentatively which secrete angiogenic factors promoting the proliferation and survival of resident ECs. Another major finding of our more effective than non primed EPCs in promoting cerebral repair processes. This is evidenced by increased angiogenesis in the Ad-CXCR4 primed EPC treatment group.

In summary, the present study demonstrates that transfusion of Ad-CXCR4 primed EPCs may be a novel approach for stroke in diabetes. Over-expression of CXCR4 in EPCs prevents the deleterious effects of HG on EPC function and at which could be the underlying mechanism for the beneficial effects of Ad-CXCR4 primed EPC transfusion. Here, we determine the level of EPC incorporation into endothelium, the level of local SDF-1α after EPC transfusion, and the pa deserve future investigation.

Acknowledgments

The authors thank Dr. Yigang Wang in the Department of Pathology and Experimental Medicine at University of Cincinnati for his helpful suggestions.

Author Contributions

Conceived and designed the experiments: Ji Chen Jianying Chen BZ YC. Performed the experiments: Ji Chen Jianying Chen. Analyzed the data: Ji Chen Jianying Chen SC CZ XX LZ AD YZ. Contributed reagents/materials/analysis tools: MM. Wrote the paper: Ji Chen MM YC.

References

 View Article • PubMed/NCBI • Google Scholar

 View Article • PubMed/NCBI • Google Scholar

smooth muscle progenitors via platelet-derived SDF-1{alpha}. Arterioscler Thromb Vasc Biol 30: 60–67. doi: 1

View Article PubMed/NCBI Google Scholar

View Article PubMed/NCBI Google Scholar

