Fall 2004

CS 141: Computer Programming I

Robert Rea
Wright State University - Main Campus

Follow this and additional works at: http://corescholarlibraries.wright.edu/cecs_syllabi
Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
http://corescholarlibraries.wright.edu/cecs_syllabi/119

This Syllabus is brought to you for free and open access by the College of Engineering and Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@wwwlibraries.wright.edu.
CS 141 - Computer Programming I

Fall 2004

CS 141 is dedicated to teaching the fundamentals of computer programming. The concepts covered in this class will be applied using the Java programming language.

Meeting Time and Place: T/Th 01 12:20 - 1:35 144 RC; 02 4:10 - 5:25 148 RC
Instructor: Robert Rea
Office: 301 Russ Engineering Center
Phone: 775-5103
Email: rrea@cs.wright.edu
Office Hours: 10-10:25, 3:35-4:10 T/Th and by appointment

Prerequisite: MTH 127 (college algebra) or equivalent

Any older edition of this textbook will serve the student adequately. The page references may be different.

Exams: There will be two midterm exams. All students are REQUIRED to attend both exams. Make-up exams are given on a case-by-case basis. If you are unable to attend an exam, provide a good (and possibly documentable) reason before the exam.

Labs: Programming assignments will be issued in during lab sessions which will begin the first week of class. Each assignment will state the due date. You must earn at least 70% of the possible points on assignments to pass this course (i.e. If you don't get 70% of the possible points in your lab assignments, you fail the entire course). Programming assignments are to be submitted on the due date. Late assignments will only be accepted for documentable reasons.

Grading: Grading is on a straight 90 80 70 60 scale. Individual exams may be curved. The weights of the grades are:

- Midterms 25% each
- Programming assignments 50%

Email: Use email for help in the course. Any issues regarding grades must be discussed in person and not through email.

Academic Dishonesty: Violators will receive an F for the course and will have their college informed. Official university policy will be followed. You will work alone on your programming assignments. Feel free to exchange ideas with your peers, but do not use some else's work (don't show other people your program and don't look at someone else's program). If you share programs, all students involved will have their grades affected. The official policy with respect to plagiarizing is found in the lab policies handout.

The CS141 home page which contains additional information, programs, study sheets and copy of this syllabus can be found at:

http://www.cs.wright.edu/~rrea/cs141.html
Any student who receives a grade of X will have 4 weeks from the date grades are posted to turn in missing work for a grade change. Requirements for granting an incomplete are: the student must have completed at least 50% of the course with a passing grade.

_Tentative Class Schedule:_ The following is a tentative class schedule. It is subject to change, based on feedback from the class and other factors. Note that not all sections listed are directly covered in class. Use of JBuilder is at your option. References to it in the text are, for the most part, not covered.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro to Algorithms, Languages, Computers and the Java Development Toolkit. First Java Program: Reserved words, identifiers, simple data types, declarations and statements, including I/O.</td>
<td>Ch 1 pp. 1-10, 26-28 Ch 2 pp. 39-57, 60-63</td>
</tr>
<tr>
<td>2</td>
<td>First Java Program (con't) Program Design Boolean Expressions, IF statements,</td>
<td>Ch 2</td>
</tr>
<tr>
<td>3</td>
<td>Compound Statements, Nested IF Statements and selection, Multiple Alternative Statements</td>
<td>Ch 2 pp. 58-59 Ch 3 pp. 85-93</td>
</tr>
<tr>
<td>4</td>
<td>Loops.</td>
<td>Ch 3 pp. 93-110</td>
</tr>
<tr>
<td>5</td>
<td>Midterm; Loops continued, Nested Loops. Increment/Decrement Operators</td>
<td>C:3 pp. 110-113 C:22 pp. 51-52</td>
</tr>
<tr>
<td>6</td>
<td>Intro to Arrays Methods; Scope of Identifiers</td>
<td>Ch5 pp. 175-187 Ch4 pp. 129-140</td>
</tr>
<tr>
<td>7</td>
<td>Methods, (con't) Object Oriented Programming</td>
<td>Ch 4 pp 141-151 Ch 6 pp. 217-224</td>
</tr>
<tr>
<td>8</td>
<td>Object Oriented Programming Continued</td>
<td>Ch 6 pp. 225-240, 243-250</td>
</tr>
<tr>
<td>9</td>
<td>Strings and Other Objects</td>
<td>Ch 7 pp. 265-277</td>
</tr>
<tr>
<td>10</td>
<td>Finish any topics above not previously covered. Review and second. midterm.</td>
<td></td>
</tr>
</tbody>
</table>