On the Existence of Multiple Positive Solutions for a Semilinear Problem In Exterior Domains

Yinbin Deng

Yi Li
Wright State University - Main Campus, yi.li@csun.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/math

Part of the Applied Mathematics Commons, Applied Statistics Commons, and the Mathematics Commons

Repository Citation

http://corescholar.libraries.wright.edu/math/113

This Article is brought to you for free and open access by the Mathematics and Statistics department at CORE Scholar. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
On the Existence of Multiple Positive Solutions for a Semilinear Problem in Exterior Domains *

Yinbin Deng
Department of Mathematics, Huazhong Normal University,
Wuhan, 430079, P.R.CHINA

Yi Li
Department of Mathematics, University of Iowa
Iowa City, IA 52242, USA

Qingji Yang
Department of Mathematics, University of Rochester
Rochester, NY 14627, USA

July 12, 1999

Abstract

In this paper, we study the existence and nonexistence of multiple positive solutions for problem

\[
\begin{cases}
\Delta u + K(x)u^p = 0 & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \quad u \in H^1_{\text{loc}}(\Omega) \cap C(\overline{\Omega}), \\
u|_{\partial \Omega} = 0, & \quad u \to \mu > 0 \quad \text{as } |x| \to \infty
\end{cases}
\]

where \(\Omega = \mathbb{R}^N \setminus \omega \) is an exterior domain in \(\mathbb{R}^N \), \(\omega \subset \mathbb{R}^N \) is a bounded domain with smooth boundary and \(N > 2, \mu \geq 0, p > 1 \) are some given constants. \(K(x) \) satisfies:

\(K(x) \in C^\alpha_{\text{loc}}(\Omega) \) and \(\exists C, \epsilon, M > 0 \) such that, \(|K(x)| \leq C|x|^{\epsilon} \) for any \(|x| \geq M \), with

*Research supported by the Natural Science Foundation of China
$l \leq -2 - \epsilon$. Some existence and nonexistence of multiple solutions have been discussed under different assumptions on K.

Key words and phrases: multiple solutions, critical exponents, elliptic equations.

Email: ybdeng@public.wh.hb.cn, yi-li@math.uiowa.edu, qyang@math.rhchester.edu

AMS Classification: 35J10 35J20 35J60 35J65

1 Introduction

In this paper, we study the existence of multiple solutions for problem

$$
\begin{aligned}
\Delta u + K(x)u^p &= 0 \quad \text{in } \Omega, \\
u &> 0 \quad \text{in } \Omega, \quad u \in H^1_{\text{loc}}(\Omega) \cap C(\overline{\Omega}). \\
u|_{\partial \Omega} &= 0,
\end{aligned}
$$

(1.1)

with the boundary condition $u \to \mu > 0$ as $|x| \to \infty$, where $\Omega = \mathbb{R}^N \setminus \omega$ is an exterior domain in \mathbb{R}^N, $\omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary and $N > 2$. $p > 1$ is a given constants. $K(x)$ satisfies:

(H$_1$) $K(x) \in C^0_{\text{loc}}(\Omega)$, $K \not\equiv 0$ and $\exists C, \epsilon, M > 0$ such that, $|K(x)| \leq C|x|^l$ for any $|x| \geq M$,

with $l \leq -2 - \epsilon$.

Such a problem occur in various branches of mathematical physis and Geometry. For $K(x) \equiv |x|^l$, $\Omega = \mathbb{R}^N$ equation (1.1) is known as Lane-Emden equation, sometimes it is also referred to as the Emden-Fowler equation in astrophysics, where u represents the density of a single star. When $p = \frac{N+2}{N-2}$, $\Omega = \mathbb{R}^N$ and $n \geq 3$, equation (1.1) is called the conformal scalar curvature equation in \mathbb{R}^N. Let g be the usual metric in \mathbb{R}^N, the problem of finding a metric g_1 which is conformal to g (i.e. $g_1 = u^{\frac{4}{N-2}}g$, for some positive function u with scalar curvature \tilde{K} is equivalent to that to find a positive solution of (1.1) with $K = \frac{N-2}{4(N-1)}\tilde{K}$. For a detail overview on (1.1), we refer readers to the papers [N2], [LN1], [Z] and the references therein.
1 INTRODUCTION

Equations like (1.1) has been studied by many mathematicians ([B], [CZ], [CL1-2], [DL1-2], [DLZ], [DN1-2], [Es], [G], [GE], [JPY], [KL], [LY1-2], [Lio], [WW], [Y], [YY], [ZC]). Ni ([N1]), Kenig and Ni ([KN]) proved existence theorems for (1.1) under the condition (H_1). It is shown in ([N1]) that if K is nonnegative with $K \geq Cr^l$ for some $l > (N - 2)(p - 1) - 2$ at infinity, or if K is nonpositive with $-K \geq Cr^l$ for some $l > -2$ at infinity then (1.1) possesses no positive solutions, where $C > 0$. Lin ([Lin]) proved the existence for (1.1) under the condition that $|K| \leq \varphi(|x|^2)$ at infinity with $\int_{\infty}^{r} \varphi(r) dr < \infty$. Lin in [Lin] also proved a nonexistence result when K is nonpositive with $-K \geq Cr^{-2}$ at infinity. Other nonexistence results are given in [BLY] and [LN1]. In case of that $|K| \leq C r^{(N-2)(p-1)-2-\varepsilon}$ at infinity for some positive constants C and ε, the existence and asymptotics of positive solutions are studied by many authors, here we only mention the results of, for example, Ni, Yosutani [NY], [LN1], LN2 and Li [L2]. In the fast decay case $|K| \leq Cr^l$, $l < -2$, Ni showed that (1.1) possesses infinitely many positive solutions which are bounded from below by positive constants (see [N1] and [LN1]). Li and Ni ([LN1]) showed that, for positive bounded solution of (1.1), the limit $u_\infty = \lim_{x \to \infty} u(x)$ always exists for any $\varepsilon > 0$, furthermore, if $u_\infty = 0$, then

$$u(x) \leq \begin{cases} C|x|^{2-N} & \text{if } p > \frac{N+l}{N-2}, \\ C\varepsilon |x|^{\frac{(1-\varepsilon)(l+2)}{l-p}} & \text{if } p \leq \frac{N+l}{N-2}, \end{cases}$$

and if $u_\infty > 0$, then

$$|u - u_\infty| \leq \begin{cases} C|x|^{2-N} & \text{if } l < -N, \\ C|x|^{2-N} \log |x| & \text{if } l = -N, \\ C|x|^{2+l} & \text{if } -N < l < -2, \end{cases}$$

at ∞. These results are refined in [LN2] and [L2].

Recently, Zhao (see [Z]) studied the following problem:

$$\begin{cases} \Delta u + K(x)f(u) = 0 & \text{in } \Omega \\ u > 0 & \text{in } \Omega, \quad u \in H^1_{\text{loc}}(\Omega) \cap C(\overline{\Omega}) \\ u|_{\partial \Omega} = 0, & u \to \mu > 0 \text{ as } |x| \to \infty. \end{cases} \quad (1.1)_\mu$$
1 INTRODUCTION

The existence of one positive solution of problem (1.1)_{\mu} when \(f \) is superlinear at 0 was obtained with some assumptions (Green-tight function) on \(K(x) \) for small \(\mu > 0 \). A natural and interesting problem is that how many solutions can be obtained for a given \(\mu > 0 \). There seems to have been little progress in this direction. The purpose of this paper is to discuss the existence and nonexistence of multiple solutions for problem (1.1)_{\mu} for a given \(\mu > 0 \).

The main results of this paper can be included in the following theorems:

Theorem 1.1. Suppose \((H_1)\). Let \(h(x) \) be a positive harmonic function in \(\Omega \) satisfying

\[
\begin{align*}
 &h(x) \bigg|_{\partial \Omega} = 0, \\
 &\lim_{|x| \to \infty} h(x) = 1.
\end{align*}
\]

Then

(i) If \(K(x) \leq 0 \), then for any \(\mu > 0 \), there exists a unique solution \(u_{\mu} \) of (1.1)_{\mu}. In addition,
\(u_{\mu} \leq \mu h \) on \(\Omega \) and \(u_{\mu} \) is increasing with respect to \(\mu \).

(ii) If \(K(x) \geq 0 \), \(\exists \mu^* \in (0, -\infty) \) and \(\mu^* < +\infty \), such that for \(\mu > \mu^* \) there does not exist a solution of (1.1)_{\mu}; and for \(\mu \in (0, \mu^*) \), there exists a minimal solution \(u_{\mu} \) of (1.1)_{\mu}. In addition, \(u_{\mu} \) is increasing with respect to \(\mu \), \(u_{\mu} \geq \mu h \) in \(\Omega \) and, as \(\mu \to \mu^* \), \(u_{\mu} \) increases to \(u_{\mu^*} \) the minimal solution of (1.1)_{\mu^*}, and \(u_{\mu^*} \) is unique.

(iii) If \(K(x) \) change sign, we can find a \(\mu^* \in (0, +\infty) \) such that problem (1.1)_{\mu} possesses at least one solution for all \(\mu \in (0, \mu^*) \).

Theorem 1.2. Suppose that \(p = \frac{N+2}{N-2} \), \((H_1)\), \(0 \leq K(x) \in L^1(\Omega) \), and

\((H_2)\) \(K(x) > 0 \) in a neighborhood \(V \) of some point \(x_0 \in \Omega \) such that

\[
K(x_0) = \sup_{x \in \Omega} K(x)
\]

and \(K(x) = K(x_0) + O(|x-x_0|^2) \) near \(x_0 \). Then problem (1.1)_{\mu} possesses at least two solutions \(u_{\mu} \) and \(U_{\mu} \) with \(u_{\mu} < U_{\mu} \) if \(\mu \in (0, \mu^*) \), where \(\mu^* \) is given by Theorem 1.1.

This paper is organized as follows: We first give some Lemmas in Section 2, which will be used in the proof of Theorem 1.1. Then the existence and nonexistence of minimal solution for problem (1.1)_{\mu} is given in Section 3 by the standary barrier method. Finally, the existence of the second solution for (1.1)_{\mu} is given in Section 4 by using the variational method.
2 Preliminaries

In this Section, we will prove some Lemmas which will be used in the proof of Theorem 1.1.

Lemma 2.1. Let f be a locally Hölder continuous function on Ω with the following decay property

$$|f(x)| \leq C|x|^{\ell} \quad \text{at } \infty$$

with $C > 0$, $\ell < -2$, and w be the Newtonian potential of f, i.e.

$$w(x) = \int_{\Omega} G(x, y) f(y) dy .$$

where $G(x, y)$ is the Green function for Ω corresponding to the Laplacian $-\Delta$. Then $w(x)$ is well-defined and at ∞ we have

$$|w(x)| \leq \begin{cases}
C|x|^{2-N} & \text{if } \ell < -N \\
C|x|^{2-N} \ln |x| & \text{if } \ell = -N \\
C|x|^{2+\ell} & \text{if } -N < \ell < -2
\end{cases}$$

Proof. This Lemma may be proved by standard arguments. We include a proof here for the sake of completeness.

From the definition of Green function, we can easily deduce that

$$G(x, y) \leq \frac{C_N}{|x - y|^{N-2}} .$$

where $C_N = (N(N-2) \omega_N)^{-1}$ and ω_N is the volume of the unit ball in \mathbb{R}^N. Using this fact and (2.1) we can find a constant $C > 0$ such that

$$|w(x)| \leq C \int_{\Omega} \frac{1}{|x - y|^{N-2}(1 + |y|^{-\ell})} dy .$$

Thus $w(x)$ is well-defined. Next we decompose the integral (2.4) as follows.

$$|w(x)| \leq \left(\int_{|y - x| \leq |x|} + \int_{|y - x| \leq 2|x|} + \int_{|y - x| \leq 2|x|} \right) \frac{C}{|y - x|^{N-2}(1 + |y|^{-\ell})} dy$$

$$\equiv I_1 + I_2 + I_3$$
where I_1, I_2 and I_3 are defined by the last equality. Same as [LN2] we can conclude that

$$I_1 \leq \frac{C}{|x|^{-\ell}} \int_0^{\frac{|x|}{2}} \frac{1}{r^{N-2}} r^N dr = C|x|^{2+\ell},$$

$$I_2 \leq C \int_{|x|/2}^{2|x|} \frac{1}{r^{N-2}} r^N dr = C|x|^{2+\ell},$$

$$I_3 \leq \begin{cases} C|x|^{2-N} & \text{if } N + \ell < 0, \\ C|x|^{2-N}(\ell n|x| + 1) & \text{if } N + \ell = 0, \\ C|x|^{2-N}(1 + |x|^{N+\ell}) & \text{if } N + \ell > 0, \end{cases}$$

Now, it is easy to see that (2.2) holds.

Lemma 2.2. Under the assumption of Lemma 2.1, suppose v is a solution of

$$\begin{cases} -\Delta v = f(x) & \text{in } \Omega, \\ v|_{\partial \Omega} = 0 & \lim_{|x| \to \infty} v(x) = \mu. \end{cases} \quad (2.5)$$

Then

$$v = \mu h(x) + \int_{\Omega} G(x,y) f(y) dy \quad (2.6)$$

where $h(x)$ is the positive harmonic function in Ω satisfying

$$h(x)|_{\partial \Omega} = 0, \quad \lim_{|x| \to \infty} h(x) = 1 \quad (2.7)$$

and $G(x,y)$ is the Green functions for Ω corresponding to Δ.

Proof. From [Z] and Lemma 2.1, we can deduce that $h(x)$ exists with $0 < h < 1$ in Ω and the integral in (2.6) is well-defined. Set $w(x) = \int_{\Omega} G(x,y) f(y) dy$. For an arbitrary but fixed point $z \in \Omega$, choose R large enough such that $R > |z|$ and $\omega \subset B_R(0)$. Now we define

$$w_1(x) = \int_{\Omega \cap B_R(0)} G(x,y) f(y) dy,$$

$$w_2(x) = \int_{\mathbb{R}^N \setminus B_R(0)} G(x,y) f(y) dy.$$

Then it is standard that

$$\Delta w_1(z) + f(z) = 0 \text{ and } \Delta w_2(z) = 0.$$
2 PRELIMINARIES

Since \(w = w_1 + w_2 \) we have
\[
\Delta w + f = 0 \quad \text{in } \Omega. \tag{2.8}
\]

By Lemma 2.1 and the property of Green functions we have
\[
w \bigg|_{\partial \Omega} = 0, \quad \lim_{|x| \to \infty} w(x) = 0. \tag{2.9}
\]

Therefore
\[
\begin{cases}
\Delta(v - w) = 0, \\
(v - w) \big|_{\partial \Omega} = 0, \quad \lim_{|x| \to \infty}(v - w) = \mu.
\end{cases}
\]

By the uniqueness of the above problem, we have
\[
v - w = \mu h(x). \]

This gives (2.6).

\[\square\]

Theorem 2.3. Suppose \((H_1)\) and let \(u \) be a bounded solution of \((1.1)_\mu\), then
\[
|u(x) - \mu h(x)| \leq \begin{cases}
C|x|^{2-N} \text{ at } \infty & \text{if } \ell < -N \\
C|x|^{2-N} \ell n|x| \text{ at } \infty & \text{if } \ell = -N \\
C|x|^{2+\ell} \text{ at } \infty & \text{if } -N < \ell < -2
\end{cases}
\]

where \(h(x) \) is the unique solution of (2.7).

The proof of the above theorem can come directly from Lemma 2.1 and Lemma 2.2.

Lemma 2.4. Suppose \((H_1)\) with \(l = -\frac{N+2}{2} - \epsilon \) for some \(\epsilon > 0 \), \(K(x) \geq 0 \), \(K(x) \neq 0 \) and \(u_\mu \) be the solution of \((1.1)_\mu\). Then
\[
u_\mu(x) - \mu h(x) \in \mathcal{D}^{1,2}_0(\Omega)
\]

where \(h(x) \) is the unique solution of (2.7) and \(\mathcal{D}^{1,2}_0(\Omega) \) is a Sobolev’s space defining as the completion of \(C_0^\infty(\Omega) \) in the norm \(\int_\Omega |\nabla u|^2 \, dx = \|u\|^2 \).

Proof. From Theorem 2.3, (2.7), and (1.1)_\mu we can easily conclude that
\[
\begin{cases}
\Delta(u_\mu - \mu h(x)) + K(x)u_\mu^p = 0 \\
(u_\mu - \mu h(x))|_{\partial \Omega} = 0, \quad \lim_{|x| \to \infty}(u_\mu - \mu h(x)) = 0
\end{cases}
\]
and
\[- \int_{\Omega} \triangle (u_\mu - \mu h(x))(u_\mu - \mu h(x)) \, dx = \int_{\Omega} |\nabla (u_\mu - \mu h(x))|^2 \, dx.\]

Thus
\[
\int_{\Omega} |\nabla (u_\mu - \mu h(x))|^2 \, dx = \int_{\Omega} K(x)u_\mu^p(u_\mu - \mu h(x)) \, dx \\
= \int_{\Omega \cap BR} K(x)u_\mu^p(u_\mu - \mu h(x)) \, dx + \int_{R^N \setminus BR} K(x)u_\mu^p(u_\mu - \mu h(x)) \, dx \\
\leq C + C_1 \int_{R^N} r^l s(r) r^{N-1} \, dr \\
\leq +\infty
\]
if \(l < -\frac{N+2}{2} \). Here
\[
s(r) = \begin{cases}
|r|^{2-N} & \text{if } l < -N, \\
|r|^{2-N} \ln |r| & \text{if } l = -N, \\
|r|^{2+l} & \text{if } -N < l < -2.
\end{cases}
\]

Remark 2.1. The conclusion of Lemma 2.4 still remain true if we replace the assumption \(l = -\frac{N+2}{2} - \epsilon \) by \(S(|x|)K(x) \in L^1 \) near \(\infty \).

\[\square \]

3 Existence of minimal solution

In this Section, we will give a complete proof of Theorem 1.1 by the standary barrier method.

Lemma 3.1. Suppose \((H_1)\) and \(K(x) \geq 0, K(x) \not\equiv 0\), then there exists a constant \(0 < \mu^* < \infty\) such that problem \((1.1)_\mu\) possesses a minimal solution for all \(\mu \in (0, \mu^*)\) and no solution for problem \((1.1)_\mu\) for \(\mu > \mu^*\).

Proof. First of all, we prove that problem \((1.1)_\mu\) has a minimal solution if \(\mu\) is small enough.

In fact, let \(\varphi(x) = h(x) + \int_{\Omega} G(x,y)K(y) \, dy\). From Lemma 2.2, \(\varphi(x)\) is a solution of

\[
\begin{cases}
-\Delta \varphi = K(x) & \text{in } \Omega \\
\varphi|_{\partial \Omega} = 0, \lim_{|x| \to \infty} \varphi(x) = 1
\end{cases}
\]
Denoting $\varphi_\mu(x) = \mu \varphi(x)$, we have $\varphi_\mu(x) \geq \mu h(x)$ because $K(x) \geq 0$ in Ω. Then
\[
\begin{cases}
-\Delta \varphi_\mu - K(x)\varphi_\mu^p = K(x)(\mu - (\mu \varphi)^p) \geq 0 \\
\varphi_\mu|_{\partial \Omega} = 0, \quad \lim_{|x| \to \infty} \varphi_\mu = \mu
\end{cases}
\]
if μ is small enough. So $\bar{u} = \mu \varphi$ is a supersolution of (1.1)$_\mu$ if μ is small enough. It is easy to check that $\underline{u} = \mu h(x)$ is a subsolution of (1.1)$_\mu$ for all $\mu > 0$ and all positive supersolution of (1.1)$_\mu$ must be larger than or equal to μh. The method of sub and supersolution yields our first claim.

Next, we set

$$
\mu^* = \sup\{\mu > 0, \text{ | problem (1.1)$_\mu$ possesses at least one solution}\}
$$

(3.2)

so that $\mu^* > 0$. For any $\mu \in (0, \mu^*)$, from the definition of μ^*, we can find an $\bar{\mu} > \mu$ such that problem (1.1)$_{\bar{\mu}}$ possesses a solution $u_{\bar{\mu}}$ and hence $u_{\bar{\mu}}$ is a supersolution of (1.1)$_\mu$. It is easy to verify that $\underline{u}_{\mu} = \mu h(x)$ is a subsolution of (1.1)$_\mu$ for all $\mu > 0$ and all positive supersolution of (1.1)$_\mu$ must be larger than or equal to μh. Using monotone iteration we can get the minimal solution u_{μ} for all $\mu \in (0, \mu^*)$.

Now, we are going to prove that $\mu^* < +\infty$. In fact, if u_{μ} solves (1.1)$_\mu$, since $u_{\mu} \geq \mu h$ we have
\[
\begin{cases}
-\Delta(u_{\mu} - \mu h(x)) = -\Delta u_{\mu} = K(x)(u_{\mu})^{p-1} \geq K(x)(\mu h)^{p-1}(u_{\mu} - \mu h(x)) \text{ in } \Omega \\
(u_{\mu} - \mu h(x)) > 0 \text{ in } \Omega, \\
(u_{\mu} - \mu h(x)) \in \mathcal{D}^{1,2}_0(\Omega)
\end{cases}
\]
Thus the first eigenvalue of $-\Delta - K(x)(\mu h)^{p-1}$ on $\mathcal{D}^{1,2}(\Omega)$ is positive and this is impossible for μ large.

From the definition of μ^* we know that there is no solution for problem (1.1)$_\mu$ if $\mu > \mu^*$.

Lemma 3.2. Suppose H_1) with $l = -\frac{N+2}{2} - \epsilon$ and $K(x) \geq 0$, $K(x) \neq 0$. u_{μ} be the minimal solution of (1.1)$_\mu$ for $\mu \in (0, \mu^*)$. Then the minimizing problem
\[
\sigma_\mu = \inf \left\{ \int_\Omega |\nabla w|^2 dx \mid w \in \mathcal{D}^{1,2}_0(\Omega), \quad \int_\Omega pK(x)w^{p-1}w^2 dx = 1 \right\}
\]

(3.3)
can be attained by a function $\psi_\mu > 0$ which satisfies the equation

\[
\begin{cases}
-\Delta w = \sigma pK(x)w^{p-1}_\mu w & \text{in } \Omega \\
w \in D^{1,2}_0(\Omega)
\end{cases}
\] (3.4)$_\mu$

with $\sigma = \sigma_\mu$. Furthermore, $\sigma_\mu > 1$ for all $\mu \in (0, \mu^*)$.

Proof. We first prove that the functional $\int_\Omega pKu^{p-1}_\mu w^2dx$ is weakly sequentially compact. In fact, let $\{w_n\}$ is a bounded sequence in $D^{1,2}_0(\Omega)$ with weak limit $w \in D^{1,2}_0(\Omega)$, the boundedness of K and u_μ in Ω and the use of Hölder inequality in a ball B_R for a large R, and $B'_R = \mathbb{R}^N \setminus B_R$ give

\[
\int_\Omega Kw^{p-1}_\mu |w_n - w|^2dx \leq C_1 \int_{B'_R \cap \Omega} |w_n - w|^2dx + C \left(\int_{B'_R} |w_n - w|^\frac{2N}{N-2}dx \right)^\frac{N-2}{N} \left(\int_{B'_R} K(x)\frac{N}{2}dx \right)^\frac{2}{N}
\]

where C, C_1 are positive constants, independent of w_n, w. It follows from the compactness of the embedding $D^{1,2}_0(\Omega \cap B_R) \hookrightarrow L^2(\Omega \cap B_R)$ and assumption (H$_1$) we have

\[
\int_\Omega Kw^{p-1}_\mu (w_n - w)^2dx \leq C_1 \int_{B'_R \cap \Omega} |w_n - w|^2dx + C \int_\Omega r^{-(2+\epsilon)\frac{N}{2}}dx = \epsilon_1 + \epsilon_1 = \epsilon_1
\]

for any $\epsilon_1 > 0$ if R and n are large enough. This gives us that the functional $\int_\Omega pKu^{p-1}_\mu w^2dx$ is weakly sequentially compact. Consequently standard minimization procedure shows that σ_μ is attained by a function $\psi_\mu \geq 0$, $\psi_\mu \in D^{1,2}_0(\Omega)$, satisfying (3.4)$_\mu$ with $\sigma = \sigma_\mu$. By assumption (H$_1$) we deduce $\sigma_\mu pK(x)w^{p-1}_\mu(x) |x|^\delta \in L^q(\Omega)$ for some $\delta > 0$ and $q > \frac{N}{2}$. Therefore a result of Egnel [E] implies that ψ_μ is bounded in Ω and $\psi_\mu = 0(|x|^{2-N})$ as $|x| \rightarrow \infty$ and standard Hölder estimates then imply that $\psi_\mu \in C^{3,\alpha}_{\text{loc}}(\Omega)$ for all $0 < \alpha < 1$.

Next, we prove $\sigma_\mu > 1$. In fact, for $\mu < \bar{\mu}$, $\mu, \bar{\mu} \in (0, \mu^*)$ problem (1.1)$_\mu$ and (1.1)$_{\bar{\mu}}$ have a minimal solution u_μ and $u_{\bar{\mu}}$ respectively. Because $u_{\bar{\mu}}$ is a supersolution of (1.1)$_{\mu}$, we have
$u_{\mu} \leq u_{\bar{\mu}}$. Set $v_{\bar{\mu}} = u_{\bar{\mu}} - \bar{\mu}h$, $v_{\mu} = u_{\mu} - \mu h$. From Lemma 2.5 we have

$$\begin{cases}
-\Delta v_{\bar{\mu}} = K(x)(v_{\bar{\mu}} + \bar{\mu}h)^p & v_{\bar{\mu}} > 0 \text{ in } \Omega \\
v_{\bar{\mu}} \big|_{\partial \Omega} = 0, \lim_{|x| \to \infty} v_{\bar{\mu}}(x) = 0 \text{ and } v_{\bar{\mu}} \in \mathcal{D}^{1,2}_0(\Omega)
\end{cases}$$

and

$$\begin{cases}
-\Delta v_{\mu} = K(x)(v_{\mu} + \mu h)^p & v_{\mu} > 0 \text{ in } \Omega \\
v_{\mu} \big|_{\partial \Omega} = 0, \lim_{|x| \to \infty} v_{\mu}(x) = 0 \text{ and } v_{\mu} \in \mathcal{D}^{1,2}_0(\Omega)
\end{cases}$$

and

$$-\Delta(v_{\bar{\mu}} - v_{\mu}) = K(x)[(v_{\bar{\mu}} + \bar{\mu}h)^p - (v_{\mu} + \mu h)^p] = K(x)(u_{\bar{\mu}}^p - u_{\mu}^p) \geq 0.$$

Maximum principle gives us that

$$v_{\bar{\mu}} - v_{\mu} > 0 \text{ in } \Omega. \quad (3.5)$$

Furthermore,

$$\begin{cases}
-\Delta(v_{\bar{\mu}} - v_{\mu}) = K(x)(u_{\bar{\mu}}^p - u_{\mu}^p) \geq K(x)pu_{\mu}^{p-1}(v_{\bar{\mu}} - v_{\mu} + (\bar{\mu} - \mu)h) \\
(v_{\bar{\mu}} - v_{\mu}) \in \mathcal{D}^{1,2}_0(\Omega)
\end{cases} \quad (3.6)$$

On the other hand,

$$\begin{cases}
-\Delta \psi_{\mu} = \sigma_{\mu}K(x)pu_{\mu}^{p-1}\psi_{\mu} & \psi_{\mu} \geq 0 \text{ in } \Omega \\
\psi_{\mu} \in \mathcal{D}^{1,2}_0(\Omega)
\end{cases} \quad (3.7)$$

Multiplying (3.6) by ψ_{μ} and (3.7) by $w \equiv u_{\bar{\mu}} - u_{\mu}$ we deduce

$$\int_{\Omega} \nabla w \nabla \psi_{\mu} dx \geq \int_{\Omega} pK(x)w_{\mu}^{p-1}(w + (\bar{\mu} - \mu)h)\psi_{\mu} dx$$

and

$$\int_{\Omega} \nabla \psi_{\mu} \nabla w dx = \sigma_{\mu}p \int_{\Omega} K(x)w_{\mu}^{p-1}\psi_{\mu} w dx.$$

Thus

$$\sigma_{\mu}p \int_{\Omega} K(x)w_{\mu}^{p-1}\psi_{\mu} w dx \geq \int_{\Omega} pK(x)w_{\mu}^{p-1}w\psi_{\mu} + p(\bar{\mu} - \mu) \int_{\Omega} K(x)w_{\mu}^{p-2}h\psi_{\mu} dx \geq \int_{\Omega} pK(x)w_{\mu}^{p-1}w\psi_{\mu} dx$$

which gives $\sigma_{\mu} > 1.$ \qed
Lemma 3.3. Suppose \((H_1)\), \(K(x) \geq 0\), \(K(x) \neq 0\) and \(K(x) \in L^1(\Omega)\). Then there exists a constant \(C > 0\) independent of \(\mu\) such that

\[
\|u_\mu - \mu h\|_{D_0^{1,2}(\Omega)} \leq C \quad \text{for all } \mu \in (0, \mu^*)
\]

where \(u_\mu\) is the minimal solution of \(1.1\) and \(h\) is the unique solution of \(2.7\).

Proof. Set \(v_\mu = u_\mu - \mu h\). From Lemma 2.4 we have

\[
\left\{ \begin{array}{l}
-\Delta v_\mu = K(x)(v_\mu + \mu h)^p, \\
v_\mu \in D_0^{1,2}(\Omega)
\end{array} \right. \quad (3.8)
\]

From Lemma 3.2 and \((3.8)\) we deduce

\[
\int_\Omega |\nabla v_\mu|^2 dx = \int_\Omega K(x)(v_\mu + \mu h)^p v_\mu dx \quad (3.9)
\]

\[
\int_\Omega |\nabla v_\mu|^2 dx \geq \sigma_\mu p \int_\Omega K(x)(v_\mu + \mu h)^{p-1} v_\mu^2 dx \quad (3.10)
\]

and hence

\[
\sigma_\mu p \int_\Omega K(x)(v_\mu + \mu h)^{p-1} v_\mu^2 dx \leq \int_\Omega K(x)(v_\mu + \mu h)^p v_\mu dx \leq \int_\Omega K(x)(v_\mu + \mu h)^{p-1} v_\mu^2 dx + \int_\Omega K(x)(v_\mu + \mu h)^{p-1} \mu h v_\mu dx.
\]

So, for any \(\epsilon > 0\),

\[
(p - 1) \int_\Omega K(x)(v_\mu + \mu h)^{p-1} v_\mu^2 dx \leq \int_\Omega K(x)\mu h(v_\mu + \mu h)^{p-1} v_\mu dx
\]

\[
\leq C \int_\Omega (K(x)v_\mu^p + K(x)v_\mu) dx
\]

\[
\leq C \left(\int_\Omega K(x) dx \right)^{\frac{p}{p+1}} \left(\int_\Omega K v_\mu^{p+1} dx \right)^{\frac{1}{p+1}}
\]

\[
+ C \left(\int_\Omega K(x) dx \right)^{\frac{p}{p+1}} \left(\int_\Omega (K(x)v_\mu^{p+1} dx) \right)^{\frac{1}{p+1}}
\]

\[
\leq C \epsilon \int_\Omega K(x) dx + \epsilon \int_\Omega K(x)v_\mu^{p+1} dx
\]

by Hölder’s inequality and Young’s inequality. Taking \(\epsilon > 0\) small enough we deduce

\[
\int_\Omega K(x)v_\mu^{p+1} dx \leq C \int_\Omega K(x) dx \leq C_1. \quad (3.11)
\]
From (3.9), (3.10) we also have
\[
\int_{\Omega} |\nabla v_{\mu}|^2 \, dx \leq \frac{1}{p} \int_{\Omega} |\nabla v_{\mu}|^2 \, dx + \int_{\Omega} K(x) \mu h (v_{\mu} + \mu h)^{p-1} v_{\mu} \, dx
\]
and hence
\[
\left(1 - \frac{1}{p}\right) \int_{\Omega} |\nabla v_{\mu}|^2 \, dx \leq C |\mu^*|^p \|h\|_{\infty}^p \int_{\Omega} K(x) v_{\mu} \, dx + C |\mu^*| \|h\|_{\infty} \int_{\Omega} K(x) v_{\mu}^p \, dx
\]
\[
\leq C \left(\int_{\Omega} K(x) \, dx\right)^{\frac{1}{p+1}} \left(\int_{\Omega} K(x) v_{\mu}^{p+1} \, dx\right)^{\frac{p}{p+1}}
\]
\[
+ C \left(\int_{\Omega} K(x) \, dx\right)^{\frac{1}{p+1}} \left(\int_{\Omega} K(x) v_{\mu}^{p+1} \, dx\right)^{\frac{p}{p+1}}
\]
\[
\leq C
\]
because of (3.11) and that \(K(x) \in L^1(\Omega)\).

\[\square\]

Lemma 3.4. Let \(h(x)\) be the solution of (2.7) and suppose \(H_1\), then for any \(\mu > 0\), there exists a unique solution \(u_\mu\) of (1.1)\(_\mu\) if \(K(x) \leq 0\). In addition, \(u_\mu \leq \mu h\) on \(\Omega\) and \(u_\mu\) is increasing in \(\mu\).

Proof. We remark that \(\mu h\) is a supersolution of (1.1)\(_\mu\) which satisfies
\[
\begin{cases}
-\Delta (\mu h) - K(x)(\mu h)^p \geq -\mu \Delta h = 0 & \text{in } \Omega \\
\mu h \big|_{\partial \Omega} = 0, \lim_{|x| \to \infty} \mu h(x) = \mu \\
\mu h > 0 & \text{in } \Omega
\end{cases}
\] (3.12)

Next, let \(\psi(x) = \int_{\Omega} G(x, y)|K(y)| \, dy\); from Lemma 2.2, \(\psi(x)\) is the positive solution of
\[
\begin{cases}
-\Delta v = |K(x)| \\
v \big|_{\partial \Omega} = 0, \ v(x) \to 0 & \text{as } |x| \to \infty
\end{cases}
\] (3.13)
we set \(\bar{u} = (\mu h - \lambda \psi)^{+}\) for some \(\lambda > 0\). We then have by standard results
\[
-\Delta \bar{u} \leq -\lambda |K(x)|_{\{u \geq 0\}} \leq K(x) \bar{u}^p \text{ on } \Omega
\]
if \(\lambda\) is chosen such that
\[
\bar{u}^p \leq (\mu h)^p \leq \lambda.
\]
where \(h(x) \) is the solution of (2.7). Thus \(\underline{u} \) is a nontrivial subsolution satisfies \(\underline{u} \leq \mu h \) and the existence part is complete.

The various uniqueness and comparison results are deduced from the following claim. Let \(v, w \in H^1_0(\Omega) \cap C_b(\Omega) \) satisfy

\[
-\Delta v + |K(x)|v^p \leq 0 \quad \text{in } \Omega \quad v \geq 0 \quad \text{on } \partial \Omega \quad \lim_{|x| \to \infty} v = \mu, \quad v \big|_{\partial \Omega} = 0,
\]

\[
-\Delta w + |K(x)|w^p \geq 0 \quad \text{in } \Omega \quad w \geq 0 \quad \text{on } \partial \Omega \quad \lim_{|x| \to \infty} w = \mu, \quad w \big|_{\partial \Omega} = 0,
\]

then \(v \leq w \) on \(\Omega \).

Indeed, for all \(\epsilon > 0 \), we may find \(R \) large enough such that

\[
v \leq (1 + \epsilon)w \equiv w_\epsilon \quad \text{for } |x| \geq R
\]

since we have on \(B_R \cap \Omega \)

\[
-\Delta (w_\epsilon - v) + p|K(x)|w_\epsilon^{p-1}(w_\epsilon - v) \\
\geq -\Delta (w_\epsilon - v) + |K(x)|(w_\epsilon^p - v^p) \\
= -\Delta w_\epsilon + |K(x)|w_\epsilon^p - (-\Delta v + |K(x)|v^p) \geq 0.
\]

Since the first eigenvalue of \(-\Delta + p|K(x)|w_\epsilon^{p-1} \) is positive (on \(H^1_0(\Omega \cap B_R) \)) we deduce \(w_\epsilon \geq v \) in \(\Omega \). Let \(\epsilon \to 0 \) we obtain our claim. Using the above claim we can easily deduce the uniqueness and that \(u_\mu \leq \mu h \) for all \(\mu > 0 \) and \(u_{\mu_1} \leq u_{\mu_2} \) if \(\mu_1 \leq \mu_2 \).

\[\square \]

Lemma 3.5. Suppose \((H_1)\), if \(K(x) \) change sign, we can find a positive constant \(\mu^* \) such that problem \((1.1)_{\mu} \) possesses at least one solution.

Proof. Consider problem

\[
\begin{cases}
-\Delta v = K(x)(v + \mu h)^p, & v > 0 \quad \text{in } \Omega, \\
v \big|_{\partial \Omega} = 0, \lim_{|x| \to \infty} v(x) = 0.
\end{cases}
\]

(3.14)

From Lemma 3.1, we can find a positive constant \(\mu^* \) such that problem

\[
\begin{cases}
-\Delta v = K^+(x)(v + \mu h)^p & \text{in } \Omega, \\
v \big|_{\partial \Omega} = 0, \lim_{|x| \to \infty} v = 0, \quad v > 0 \quad \text{in } \Omega
\end{cases}
\]
possess a minimal solution \bar{v} for all $\mu \in (0, \mu^*)$. From Lemma 3.4, problem

$$\begin{cases}
-\Delta v = -K^- (x)(v + \mu h)^p & \text{in } \Omega, \\
v|_{\partial \Omega} = 0, \lim_{|x| \to \infty} v = 0, \ v < 0 & \text{in } \Omega.
\end{cases}$$

possesses a unique solution v for all $\mu > 0$. Then \bar{v} is a supersolution of (3.14)$_\mu$ and v is a subsolution of (3.14)$_\mu$. Furthermore $v = \bar{v} - v_*$ satisfies

$$\begin{cases}
-\Delta v = K^+(x)(\bar{v} + \mu h)^p + K^-(x)(\underline{v} + \mu h)^p & \geq 0, \\
v|_{\partial \Omega} = 0, \lim_{|x| \to \infty} v = 0,
\end{cases}$$

maximum principle implies that $v > 0$. The existence of solution for (3.14)$_\mu$ with $K(x)$ change sign come from the method of super-subsolution. Suppose v_μ be the solution of (3.14)$_\mu$, then $u_\mu = v_\mu + \mu h$ is a solution of (1.1)$_\mu$ with $0 < \underline{v} + \mu h < u_\mu < \bar{v} + \mu h$.

\begin{proof}
From the above lemmas, we only have to prove that problem (1.1)$_{\mu^*}$ has a unique solution under the assumption (3.15). Denote the corresponding solution of (1.1)$_{\mu^*}$ by u_{μ^*}.

Let $v_\mu = u_\mu - \mu h$. From assumption (3.15) and Lemma 3.3, we know $v_\mu \in D^{1,2}_0(\Omega)$ and

$$\|v_\mu\|_{D^{1,2}_0(\Omega)} \leq C < +\infty \text{ for all } \mu \in (0, \mu^*)$$

\end{proof}

Theorem 3.6. Suppose (H_1). Let h be the solution of (2.10), then

(i) If $K(x) \leq 0$, for any $\mu > 0$, there exists a unique solution u_μ of (1.1)$_\mu$. In addition, $u_\mu \leq \mu h$ on Ω and u_μ is increasing in μ.

(ii) If $K(x) \geq 0$, $\exists \mu^* \in (0, \infty] \text{ and } \mu^* < +\infty \text{ if } K(x) \not\equiv 0$, such that for $\mu > \mu^*$ there does not exist a solution of (1.1)$_\mu$ and for $\mu \in (0, \mu^*)$, there exists a minimal solution u_μ of (1.1)$_\mu$. In addition, u_μ is increasing in μ, $u_\mu \geq \mu h$ in Ω. Finally, if

$$K(x) \in L^1(\Omega), \quad (3.15)$$

then as $\mu \to \mu^*$, u_μ increase to u_{μ^*} the minimal solution of (1.1)$_{\mu^*}$, and u_{μ^*} is unique.

(iii) If $K(x)$ change sign, we can find a $\mu^* \in (0, +\infty)$ such that problem (1.1)$_\mu$ possesses at least one solution for all $\mu \in (0, \mu^*)$.

Proof. From the above lemmas, we only have to prove that problem (1.1)$_{\mu^*}$ has a unique solution under the assumption (3.15). Denote the corresponding solution of (1.1)$_\mu$ by u_μ. Let $v_\mu = u_\mu - \mu h$. From assumption (3.15) and Lemma 3.3, we know $v_\mu \in D^{1,2}_0(\Omega)$ and

$$\|v_\mu\|_{D^{1,2}_0(\Omega)} \leq C < +\infty \text{ for all } \mu \in (0, \mu^*)$$
where C is a positive constant independent of μ. We claim that

$$\int_{\Omega} v_{\mu}^q dx \leq C < \infty \quad (3.16)$$

for all $q \geq \frac{2N}{N-2}$, where C is some positive constant independent of N. First of all, we consider $p \in (1, \frac{N+2}{N-2})$, the subcritical case. We adapt the argument due to Brezis and Kato [BK] to deduce the above claim. In fact, v_{μ} is a solution of

$$\begin{cases}
-\Delta v_{\mu} = K(x)(v_{\mu} + \mu h)^p \\
v_{\mu} \in D^{1,2}_0(\Omega) \quad v_{\mu} > 0 \quad \text{in } \Omega
\end{cases} \quad (3.17)$$

Let $i > 1$, multiplying $(3.17)_{\mu}$ by v_i^μ and integrating by parts we obtain

$$4i(1+i)^{-2} \int_{\Omega} |\nabla v_i^\mu|^{2(1+i)} dx = \int_{\Omega} K(x)(v_{\mu} + \mu h)^p v_i^\mu dx.$$
and (3.17)—(3.19) we have

\[
\left(\int_\Omega v_\mu^q dx \right) ^{\frac{N-2}{N}} = \left(\int_\Omega \left(v_\mu^\frac{1}{(1+i)} \right)^{\frac{2N}{N-2}} dx \right) ^{\frac{N-2}{N}} \\
\leq C \int_\Omega v_\mu^{p+i} dx + C \\
\leq C \epsilon \int_\Omega v_\mu^{i+\frac{N-2}{N}} dx + C \epsilon \int_\Omega v_\mu^{\frac{2N}{N-2}} dx + C \\
= C \epsilon \int_\Omega v_\mu^{\frac{(N-2)p}{N-2}} \cdot \left(\frac{4}{N-2} \right) dx + C \\
\leq C \epsilon \left(\int_\Omega v_\mu^q dx \right) ^{\frac{N-2}{N}} \left(\int_\Omega v_\mu^{\frac{2N}{N-2}} dx \right) ^{\frac{2}{N}} + C
\]

with \(q = \frac{N(1+i)}{N-2} \). From Lemma 3.3 and Sobolev inequality we deduce \(\{ v_\mu \} \) is bounded in \(L^q(\Omega) \) for large \(q > 1 \) if we choose \(\epsilon \) small enough.

Now, we are going to deal with the case when \(p = \frac{N+2}{N-2} \). Our method is a combination of ideas found in papers of Brezis and Kato [BK] and Egnell [E]. For \(j \geq 1 \), define \(\varphi_j(t) = t^j \), \(t \geq 0 \) and \(\psi_j(t) = \int_0^t |\varphi_j(s)|^2 ds = \frac{t^2}{2j-1} t^{2j-1} \). Let \(\mu \in (0, \mu^*) \) and \(v_\mu \) be the corresponding minimal solution of (3.17)\(\mu \). From Lemma 3.2 we have

\[
\int_\Omega \nabla v_\mu \nabla v dx \geq p \int_\Omega K(x)(v_\mu + \mu h)^{p-1} v dx
\]

(3.20)

for all \(v \in \mathcal{D}_0^{1,2}(\Omega) \). By Theorem 2.3, Lemma 2.4 and Remark 2.1 we know \(\varphi_j(v_\mu) \in \mathcal{D}_0^{1,2}(\Omega) \).

We may choose \(v = \varphi_j(v_\mu) \) in (3.20) to obtain

\[
\int_\Omega |\varphi'_j(v_\mu)|^2 |\nabla v|^2 dx \geq p \int_\Omega K(x)(v_\mu + \mu h)^{p-1} \varphi_j^2(v_\mu) dx.
\]

(3.21)

Since \(v_\mu \) is a solution of (3.17)\(\mu \) and \(\psi_j(v_\mu) \in \mathcal{D}_0^{1,2}(\Omega) \), we also have

\[
\int_\Omega \psi'_j(v_\mu) |\nabla v|^2 dx = \int_\Omega K(x)(v_\mu + \mu h)^p \psi_j(v_\mu) dx.
\]

(3.22)

From (3.22), (3.21) we obtain

\[
p \int_\Omega K(x)(v_\mu + \mu h)^{p-1} v_\mu^{2j} \leq \frac{j^2}{2j-1} \left[\int_\Omega K(x)(v_\mu + \mu h)^{p-1} v_\mu^{2j} + \int_\Omega K(x)(v_\mu + \mu h)^{p-1} \mu h v_\mu^{2j-1} \right]
\]

(3.23)

since \(\frac{j^2}{2j-1} \geq 1 \) and is increasing in \(j \), we may choose \(j > 1 \) sufficiently close to 1 such that
\[\frac{j^2}{2j-1} < p \text{ for } j \leq j_0. \] Set \(\alpha(j, p) = p - \frac{j^2}{2j-1} > 0. \) Then (3.23) gives

\[\alpha(j, p) \int_{\Omega} K(x)v^{p+2j-1}dx \leq \alpha(j, p) \int_{\Omega} K(x)(v_\mu + \mu h)^{p-1}v_\mu^{2j}dx \]

\[\leq \frac{j^2}{2j-1} \int_{\Omega} K(x)(v_\mu + \mu h)^{p-1}\mu h v_\mu^{2j-1}dx \]

\[\leq C \frac{j^2}{2j-1} \left[\int_{\Omega} K(x)v^{p+2j-2}_\mu \mu h dx + \int_{\Omega} K(x)(\mu h)^{p}v_\mu^{2j-1}dx \right] \]

\[\leq C \left[\int_{\Omega} K(x)v^{p+2j-2}_\mu dx + \int_{\Omega} K(x)v_\mu^{2j-1}dx \right]. \]

because \(\mu < \mu^*, K(x) \leq C. \) Since

\[\int_{\Omega} K(x)v^{p+2j-2}_\mu dx \leq C \left[\int_{\Omega} K(x)dx \right]^{\frac{1}{p+2j-1}} \left[\int_{\Omega} K(x)v^{p+2j-1}_\mu dx \right]^{\frac{p+2j-2}{p+2j-1}} \]

\[\leq C \int_{\Omega} K(x)dx + \frac{\delta}{2} \int_{\Omega} K(x)v^{p+2j-1}_\mu dx \]

for all \(\delta > 0 \) and similarly,

\[\int_{\Omega} K(x)v^{2j-1}_\mu dx \leq C \int_{\Omega} K(x)dx + \frac{\delta}{2} \int_{\Omega} K(x)v^{p+2j-1}_\mu dx \]

for all \(\delta > 0, \) we can deduce

\[(\alpha(j, p) - \delta) \int_{\Omega} K(x)v^{p+2j-1}_\mu dx \leq C_\delta \int_{\Omega} K(x)dx. \]

From the assumption of \(K(x) \in L^1(\Omega), \) we have

\[\int_{\Omega} K(x)v^{p+2j-1}_\mu dx \leq C_\delta \quad (3.23)^* \]

for \(j \in (1, j_0] \) and \(C > 0 \) independent of \(\mu \in (0, \mu^*) \) if we take \(\delta \) small enough. This shows that (3.16) holds for all \(q \in \left[\frac{2N}{N-2}, p + 2j_0 - 1 \right]. \) To establish (3.16) for all \(q \geq \frac{2N}{N-2} \) we use ideas in Brezis and Kato [BK]. Set \(q_0 = \frac{2N}{N-2}, \delta = p + 2j_0 - 1 - \frac{2N}{N-2} > 0. \) Multiplication of (3.17) by \(v_\mu^{q_0-1}, \) integration by parts and simple application of Hölder’s inequality and
Young’s inequality yield

\[(q_0 - 1)q_0^{-2} \left\| \nabla v_{\mu}^{\frac{q_0}{p}} \right\|^2 dx = \int_{\Omega} K(x)(v_{\mu} + \mu h)^p v_{\mu}^{q_0-1} dx \]

\[\leq C \int_{\Omega} K(x)v_{\mu}^{p+q_0-1} dx + C \int_{\Omega} K(x)v_{\mu}^{q_0-1} dx \]

\[\leq C \int_{\Omega} K(x)v_{\mu}^{p+q_0-1} dx \]

\[+ C \left(\int_{\Omega} K(x) dx \right)^{\frac{p}{p+q_0-1}} \left(\int_{\Omega} K(x)v_{\mu}^{p+q_0-1} dx \right)^{\frac{q_0-1}{p+q_0-1}} \]

\[\leq C \int_{\Omega} K(x)v_{\mu}^{p+q_0-1} dx + C \int_{\Omega} K(x) dx \]

which gives us

\[(q_0 - 1)q_0^{-2} \int \left\| \nabla v_{\mu}^{\frac{q_0}{p}} \right\|^2 dx \leq C \int_{\Omega} K(x)v_{\mu}^{p+q_0-1} dx + C \int_{\Omega} K(x) dx \] (3.24)

where \(C\) is a positive constant independent of \(\mu\).

For any given \(\epsilon > 0\) we can find a positive constant \(C_\epsilon\) such that

\[v_{\mu}^{p-1+q_0} \leq \epsilon v_{\mu}^{p-1+q_0} + \frac{2\delta}{N} + C_\epsilon v_{\mu}^{q_0}.\]

This can be easily verified by the fact that \(q_0 < p - 1 + q_0 < p - 1 + q_0 + \frac{2\delta}{N}\). Therefore, it follows from Hölder inequality, Sobolev’s inequality and (3.23)* with \(j = j_0\) that

\[\int_{\Omega} K(x)v_{\mu}^{p+q_0-1} dx \leq \epsilon \int_{\Omega} K(x)v_{\mu}^{p-1+q_0+\frac{2\delta}{N}} dx + C_\epsilon C \]

\[\leq \epsilon \left(\int_{\Omega} K(x) \left(v_{\mu}^{q_0} \right)^{\frac{p+1}{p}} dx \right)^{\frac{2\delta}{p+1}} \left(\int_{\Omega} K(x)v_{\mu}^{p+2j_0-1} dx \right)^{\frac{q_0}{p}} + C_\epsilon \]

\[\leq \epsilon C \int_{\Omega} (v_{\mu}^{q_0})^{p+1} dx + C_\epsilon C \]

\[\leq \epsilon C \int_{\Omega} \left| \nabla v_{\mu}^{\frac{q_0}{p}} \right|^2 dx + C_\epsilon C. \]

which gives us

\[\int_{\Omega} K(x)v_{\mu}^{p+q_0-1} dx \leq \epsilon C \int_{\Omega} \left| \nabla v_{\mu}^{\frac{q_0}{p}} \right|^2 dx + C_\epsilon C. \] (3.25)

It follows from (3.24) and (3.25), with \(\epsilon\) sufficiently small, that

\[\int_{\Omega} \left| \nabla v_{\mu}^{\frac{q_0}{p}} \right|^2 dx \leq C \] (3.26)
for some constant C, independent of μ, and by Sobolev’s inequality we have
\[
\int_{\Omega} v_{\mu}^{q_0} \, dx \leq C.
\]
The desired inequality (3.16) then follows easily by iteration. Set $q_1 = \frac{q_0}{2}$ and $q_k = \frac{q_0}{2}^{k-1}$.

Denote $g_{\mu}(x) = K(x)(v_{\mu}(x) + \mu h(x))^p$. From the above proof we deduce $g_{\mu}(x) \in L^q(\Omega)$ for all $q \geq p + 1$ and
\[
\int_{\Omega} |g_{\mu}(x)|^q \, dx \leq C \int_{\Omega} K(x)^q v_{\mu}(x)^{pq} \, dx + C \int_{\Omega} K(x)^q (\mu h(x))^{pq} \, dx
\leq C |K(x)|_\infty^{q-1} \int_{\Omega} K(x)^q v_{\mu}^{pq} \, dx + C \mu^* |h(x)|_\infty^q \int_{\Omega} K(x)^q \, dx
\leq C
\]
for all $\mu \in (0, \mu^*)$.

We employ a classical a priori estimate to obtain
\[
\|v_{\mu}\|_{C^1,0(B_R \cap \Omega)} \leq C_R (\|v_{\mu}\|_{p+1,B_2R(\Omega)} + \|g_{\mu}\|_{q,B_2R(\Omega)})
\]
for solution of $-\Delta v = g_{\mu}(x)$, where $B_R(x)$ is a ball of radius R and centre x, and C_R is a constant independent of μ and x. Hölder estimates in $B_R \cap \Omega$ then shows that
\[
\|v_{\mu}\|_{C^{1,\alpha}(B_R \cap \Omega)} \leq C_R
\]
for some constant C_R, independent of μ. A simple diagonalization argument and the Ascoli-Arzela theorem may be employed to show that for a subsequence $\mu_n \to \mu^*$, $v_{\mu_n}, |\nabla v_{\mu_n}|$ converge uniformly on each compact subset of Ω, to a function $v_{\mu^*} \in D_0^{1,2}(\Omega)$. It follows that
\[
\int_{\Omega} \nabla v \cdot \nabla v_{\mu^*} \, dx = \int_{\Omega} K(x)(v_{\mu^*} + \mu^* h)^p v \, dx
\]
for all $v \in C_0^\infty(\Omega)$ and therefore v_{μ^*} is a nonnegative weak solution of (3.17)$_\mu$. Thus $u_{\mu^*} = v_{\mu^*} + \mu^* h$ is a solution of (1.1)$_{\mu^*}$.

Finally, we prove that u_{μ^*} is unique. In fact, from the definition we can easily deduce that $\sigma_{\mu^*} = 1$ by applying the implicit function theorem to the function $F : D_0^{1,2}(\Omega) \to D_0^{1,2}(\Omega)$ with
\[
F(u) = -\Delta u - K(x)(u + \mu h)^p \quad u \in D_0^{1,2}(\Omega).
\]
If there exists another solution $\bar{u}_{\mu^*} \geq u_{\mu^*}$ for problem $(1.1)_{\mu^*}$, set $\bar{v}_{\mu^*} = \bar{u}_{\mu^*} - \mu^* h$, $v_{\mu^*} = u_{\mu^*} - \mu^* h$. We have from (3.17)$_\mu$

\[-\Delta (\bar{v}_{\mu^*} - v_{\mu^*}) = K(x)[(\bar{v}_{\mu^*} + \mu^* h)^p - (v_{\mu^*} + \mu^* h)^p]
= K(x)[p(v_{\mu^*} + \mu^* h)^{p-1}(\bar{v}_{\mu^*} - v_{\mu^*})
+ p(p-1)(v_{\mu^*} + \theta(\bar{v}_{\mu^*} - v_{\mu^*}) + \mu^* h)^{p-2}(\bar{v}_{\mu^*} - v_{\mu^*})]\]

for some $\theta(x) \in [0,1]$. From Lemma 3.2 and the above equality, we deduce

\[\sigma(\mu^*) \int_\Omega p(v_{\mu^*} + \mu^* h)^{p-1}(\bar{v}_{\mu^*} - v_{\mu^*}) \psi_{\mu^*} dx = \int_\Omega \nabla \psi_{\mu^*} \nabla (\bar{v}_{\mu^*} - v_{\mu^*}) dx\]
\[= \int_\Omega p(v_{\mu^*} + \mu^* h)^{p-1}(\bar{v}_{\mu^*} - v_{\mu^*}) \psi_{\mu^*} dx + \int_\Omega p(p-1)(v_{\mu^*} + \theta(\bar{v}_{\mu^*} - v_{\mu^*}) + \mu^* h)^{p-2}(\bar{v}_{\mu^*} - v_{\mu^*})^2 \psi_{\mu^*} dx\]

i.e. \[(\sigma(\mu^*) - 1) \int_\Omega p(v_{\mu^*} + \mu^* h)^{p-1}(\bar{v}_{\mu^*} - v_{\mu^*}) \psi_{\mu^*} dx = \int_\Omega p(p-1)(v_{\mu^*} + \theta(\bar{v}_{\mu^*} - v_{\mu^*}) + \mu^* h)^{p-2}(\bar{v}_{\mu^*} - v_{\mu^*})^2 \psi_{\mu^*} dx\]

we can obtain that $\bar{v}_{\mu^*} \equiv v_{\mu^*}$ from $\sigma(\mu^*) = 1$. \[\square\]

4 The existence of second solution

For $\mu \in (0, \mu^*)$, let u_{μ} be the first solution of $(1.1)_{\mu}$ and consider the problem

\[
\begin{align*}
-\Delta v &= K(x)((v + u_{\mu})^p - u_{\mu}^p) \quad \text{in } \Omega \\
v &\in D_0^1(\Omega) , \quad v > 0 \quad \text{in } \Omega.
\end{align*}
\]

(4.1)$_\mu$

It is clear that $U_{\mu} = v_{\mu} + u_{\mu}$ is a solution of $(1.1)_{\mu}$ if v_{μ} is a solution of $(4.1)_{\mu}$. Consider the energy functional J_{μ} defined by

\[J_{\mu}(v) = \int_{\Omega} \frac{1}{2} |\nabla v|^2 - K(x) \left[\frac{1}{p+1}(u_{\mu} + v^+)^{p+1} - \frac{1}{p+1}u_{\mu}^{p+1} - u_{\mu}^p v^+ \right] dx .\]

Standard procedure from the calculus of variations shows that J_{μ} is well defined in $D_0^1(\Omega)$ with continuous Frechet derivative given by

\[J'_{\mu}(v)\phi = \int_{\Omega} [\nabla v \nabla \phi - K(x)((u_{\mu} + v^+)^p - u_{\mu}^p)] \phi dx \quad \phi \in D_0^{1,2}(\Omega)\]
A critical point \(v \) of \(J_\mu \) is a weak solution of the equation
\[
-\Delta v = K(x)[(u_\mu + v^+)^p - u_\mu^p]\quad v \in \mathcal{D}_0^1(\Omega)
\]
and if \(v > 0 \) in \(\mathbb{R}^N \), then \(v \) is a solution of (4.1).µ.

The following Lemma comes from the fact that
\[
\lim_{s \to 0} \frac{(u_\mu + s)^p - u_\mu^p - pu_\mu^{p-1}s}{s} = 0
\]
and
\[
\lim_{s \to \infty} \frac{(u_\mu + s)^p - u_\mu^p - pu_\mu^{p-1}s}{sp^p} = 1.
\]

Lemma 4.1. For any \(\epsilon > 0 \), there exist a \(C_\epsilon > 0 \) such that
\[
(u_\mu + s)^p - u_\mu^p - pu_\mu^{p-1}s \leq \epsilon u_\mu^{p-1}s + C_\epsilon s^p
\]
for all \(s \geq 0 \).

Lemma 4.2. Suppose \((H_1)\) with \(\ell = -\frac{N+2}{2} - \epsilon \). There exists two constant \(\alpha > 0, \rho > 0 \) such that
\[
J_\mu(v) \geq \alpha > 0, \quad \text{for } v \in \mathcal{D}_0^1(\Omega), \quad \|v\| = \rho .
\]

Proof. Lemma 4.1 implies that
\[
J_\mu(v) = \frac{1}{2} \int_\Omega |\nabla v|^2 dx - \frac{p}{2} \int_\Omega K(x)u_\mu^{p-1}(v^+)^2 dx
\]
\[
- \int_\Omega \int_0^{v^+} K(x)[(u_\mu + s)^p - u_\mu^p - pu_\mu^{p-1}s]ds dx
\]
\[
\geq \frac{1}{2} \int_\Omega |\nabla v|^2 - pK(x)u_\mu^{p-1}(v^+)^2 dx
\]
\[
- \int_\Omega K(x) \left(\frac{\epsilon}{2} u_\mu^{p-1}(v^+)^2 + C_\epsilon \frac{(v^+)^{p+1}}{p+1} \right) dx .
\]
Furthermore, from the definition of \(\sigma_\mu \) in Lemma 3.2, we have
\[
\int_\Omega |\nabla v|^2 dx \geq \sigma_\mu p \int_\Omega K(x)u_\mu^{p-1}(v^+)^2 dx
\]
and, therefore, by \(\sigma_\mu > 1 \) we obtain by choosing \(\epsilon \) small enough
\[
J_\mu(v) \geq \frac{1}{2\sigma_\mu}(\sigma_\mu - 1 - \epsilon) \int_\Omega |\nabla v|^2 dx - \frac{C_\epsilon}{p+1} \int_\Omega K(x)v^{p+1} dx
\]
\[
\geq \frac{1}{4\sigma_\mu}(\sigma_\mu - 1) \int_\Omega |\nabla v|^2 dx - C \left[\int_\Omega |\nabla v|^2 dx \right]^{p+1}
\]
\[
= \frac{1}{4\sigma_\mu}(\sigma_\mu - 1)\|v\|^2 - C\|v\|^{p+1}
\]
and the conclusion in Lemma 4.2 follows.
Lemma 4.3. Suppose (H_1) with $\ell = -\frac{N+2}{2} - \epsilon$. Then there exist $0 < \psi_0 \in D^1_0(\Omega)$ and $R_0 > 0$ such that

$$J_\mu(R\psi_0) < 0$$

for $R \geq R_0$.

Proof. Let $h(x, s) = K(x)((u_\mu + s)^p - u_\mu^p - s^p)$, since $u_\mu(x)$ is bounded in Ω, it is easy to check that

$$\lim_{s \to 0} \frac{h(x, s)}{s} \leq M$$
$$\lim_{s \to \infty} \frac{h(x, s)}{s^p} = 0$$

uniformly in $x \in \Omega$, where $M > 0$ is some constant independent of x. Therefore, for any $\epsilon > 0$, there is a constant $C_\epsilon > 0$ such that

$$h(x, s) \leq \epsilon s^p + C_\epsilon s .$$

Now, choose a nonzero function $\psi_0 \in C^\infty_0(\Omega)$ such that $\psi_0 \geq 0$ and $K(x) \geq k_0 > 0$ on the support of ψ_0. Then

$$J_\mu(R\psi_0) \leq \frac{1}{2} R^2 \|\psi_0\|^2 - \frac{R^{p+1}}{p + 1} \int_\Omega K(x)\psi_0^{p+1} dx + C_\epsilon R^2 \int_\Omega K\psi_0^2 dx + \epsilon R^{p+1} \int_\Omega K\psi_0^{p+1} dx .$$

It is then clear from the choice of ψ_0, that for ϵ sufficiently small there is $R_0 > 0$ such that

$$J_\mu(R\psi_0) < 0$$

for all $R \geq R_0$.

This completes the proof of Lemma 4.3, with R_0 and ψ_0 as above. \hfill \square

In order to use mountain pass Lemma [BN] to obtain the solution of $(4.1)_\mu$, we suppose moreover (H_2).

Set

$$\Gamma = \{ \gamma \in C([0, 1], \ D^{1,2}_0(\Omega)), \ \gamma(0) = 0, \ \gamma(1) = R_0\psi_0 \},$$

where ψ_0 is given by Lemma 4.2. We exploit the fact that the critical equation

$$-\Delta u = u^{\frac{N+2}{N-2}} \quad \text{in } \mathbb{R}^N$$
has the positive radial solution
\[u_\epsilon(x) = k \left[\frac{\epsilon}{\epsilon^2 + |x - x_0|^2} \right]^{N-2} \]
with \(k = (N(N - 2))^{\frac{N-2}{4}} \) for any \(\epsilon > 0, \ x \in \mathbb{R}^N \). Furthermore,
\[\int_{\mathbb{R}^N} |\nabla u_\epsilon|^2 dx = \int_{\mathbb{R}^N} u_\epsilon^{p+1} dx = S^{N/2}, \]
and for some positive constant \(c \) depending only on \(N \) \(cu_\epsilon(x) \) attains the infimum for the variational problem
\[S = \inf \left\{ ||u||^2 \mid \int_{\mathbb{R}^N} u^{p+1} dx = 1 \ u \in \mathcal{D}_0^{1,2}(\mathbb{R}^N) \right\}. \]

Let \(R > 0 \) be small enough that \(B_{2R}(x_0) \in V \). Let \(\psi \) be a piecewise smooth function with support in \(B_{2R} \) such that \(\psi(x) \equiv 1 \) in \(B_R(x_0) \), \(0 \leq \psi(x) \leq 1 \) in \(B_{2R}(x_0) \) and \(|\nabla \psi(x)| \leq \frac{1}{R} \).

Define
\[w_\epsilon(x) = \psi(x)u_\epsilon(x) \]
and
\[v_\epsilon(x) = w_\epsilon(x) \left[\int_\Omega K(x)w_\epsilon^{p+1} dx \right]^{\frac{1}{p+1}}. \]

The proof of the following Lemma follows the same lines as in [BK].

Lemma 4.4. If assumptions (H1) - (H2) holds and \(p = \frac{N+2}{N-2} \), then there exist some positive constant \(\epsilon > 0 \) and \(t_0 > 0 \) such that
\[J_\mu(t_0u_\epsilon) < 0 \]
and
\[0 < \sup_{t \geq 0} J_\mu(tu_\epsilon) < \frac{1}{N} S^{N/2} (\|K\|_{L^\infty})^{\frac{2-N}{2}}. \]

Proof. Since \(\frac{\partial u_\epsilon}{\partial \gamma} \leq 0 \), we have
\[\int_{B_R} |\nabla w_\epsilon|^2 dx = \int_{B_R} |\nabla u_\epsilon|^2 dx \leq \int_{B_R} u_\epsilon^{p+1} dx \]
and by the assumption (H\textsubscript{2}) we also have
\[K(x_0) \int_{B_R} u_{\epsilon}^{p+1} dx \leq \int_{B_R} K(x) u_{\epsilon}^{p+1} dx + 0(\epsilon^2). \]

Simple calculations also show that
\[\int_{\mathbb{R}^N \setminus B_R} u_{\epsilon}^{p+1} dx = 0(\epsilon^N) \]
\[A_\epsilon \equiv \int_{\mathbb{R}^N \setminus B_R} |\nabla w_{\epsilon}|^2 dx = 0(\epsilon^{N-2}) \]
as \(\epsilon \to 0 \) and
\[S = \left[\int_{\mathbb{R}^N} u_{\epsilon}^{p+1} dx \right]^{\frac{2}{p+1}}. \]

Therefore, we have
\[\int_{\mathbb{R}^N} |\nabla w_{\epsilon}|^2 dx = \int_{B_R} |\nabla w_{\epsilon}|^2 dx + A_\epsilon \]
\[\leq \int_{B_R} u_{\epsilon}^{p+1} dx + A_\epsilon \]
\[\leq S \left[\int_{B_R} u_{\epsilon}^{p+1} dx \right]^{\frac{2}{p+1}} + A_\epsilon \]
\[\leq S \|K\|_\infty^{-\frac{2}{p+1}} \left[\int_{B_R} K(x) u_{\epsilon}^{p+1} dx \right] + 0(\epsilon^2) + 0(\epsilon^{N-2}). \]

Set \(V_\epsilon \equiv \int_{\mathbb{R}^N} |\nabla v_{\epsilon}|^2 dx \), since for small \(\epsilon > 0 \), say \(\epsilon \leq \epsilon_0 \), it is easy to see that
\[\int_{B_R} K(x) u_{\epsilon}^{p+1} dx \geq C_{\epsilon_0} \]
for some positive constant \(C_{\epsilon_0} \), the definition of \(V_\epsilon \) and the last two inequalities imply that
\[V_\epsilon \leq S(\|K\|_\infty^{-\frac{2}{p+1}} + 0(\epsilon^2) + 0(\epsilon^{N-2}). \]

We consider now \(J_\mu(v) \)
\[J_\mu(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \frac{1}{p+1} \int_{\Omega} K(x)|(u_\mu + v^+)^{p+1} - u_\mu^{p+1}| dx + \int_{\Omega} K(x)u_\mu^p v^+ dx \]
\[= \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \int_{\Omega} K(x) \int_0^{v^+} ((u_\mu + s)^p - u_\mu^p) ds dx \]
\[= \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \frac{1}{p+1} \int_{\Omega} K(x)(v^+)^{p+1} dx \]
\[- \int_{\Omega} K(x) \int_0^{v^+} [(u_\mu + s)^p - u_\mu^p - s^p] ds dx. \]
Set $F(x, v) = K(x) \int_0^{v^+} ((u_\mu + s)^p - u_\mu^p - s^p)ds$, then

$$J_\mu(tv_\epsilon) = \frac{1}{2} t^2 V_\epsilon - \frac{1}{p+1} t^{p+1} - \int F(x, tv_\epsilon)dx .$$

Clearly, $\lim_{t \to \infty} J_\mu(tv_\epsilon) = -\infty$ for all $\epsilon > 0$, hence $\sup_{t \geq 0} J_\mu(tv_\epsilon)$ is attained by some $t_\epsilon \geq 0$, we may assume $t_\epsilon > 0$ for $\epsilon > 0$, otherwise there would be nothing to prove.

It follows from $\frac{d}{dt} J_\mu(tv_\epsilon)|_{t=t_\epsilon} = 0$ and the monotonicity of F in v that

$$t_\epsilon \leq V_\epsilon^{\frac{1}{p+1}} \leq C_0 \text{ for all } \epsilon > 0 ,$$

where C_0 is some positive constant independent of ϵ. By the monotonicity property of $\frac{1}{2} t^2 V_\epsilon - \frac{1}{p+1} t^{p+1}$ on the interval $(0, V_\epsilon^{\frac{1}{p+1}}]$ we then have

$$\sup_{t \geq 0} J_\mu(tv_\epsilon) = J_\mu(t_\epsilon v_\epsilon) \leq \frac{1}{N} V_\epsilon^{\frac{1}{p+1}} - \int_{B_{2R}} F(x, t_\epsilon v_\epsilon)dx .$$

The estimate on V_ϵ and the above inequality imply that

$$\sup_{t \geq 0} J_\mu(tv_\epsilon) \leq \frac{1}{N} S_{\frac{N}{p+1}}(\|k\|_\infty) - \int_{B_{2R}} F(x, tv_\epsilon)dx + 0(\epsilon^L) ,$$

where $L = \min(N - 2, 2)$. The conclusion will follows if we can show that

$$\lim_{\epsilon \to 0} \epsilon^{-L} \int_{B_{2R}} F(x, t_\epsilon v_\epsilon)dx = +\infty .$$

First we claim that

$$\lim_{\epsilon \to 0} t_\epsilon > 0 .$$

Indeed, by $\frac{d}{dt} J_\mu(tv_\epsilon)|_{t=t_\epsilon} = 0$ we have

$$V_\epsilon - t_\epsilon^{p+1} - t_\epsilon^{-1} \int_{\Omega} K(x)[(u_\mu + t_\epsilon v_\epsilon)^p - u_\mu^p - t_\epsilon^p v_\epsilon^p]v_\epsilon dx = 0 .$$

We show that

$$\lim_{\epsilon \to 0} t_\epsilon^{-1} \int_{\Omega} K(x)[(u_\mu + t_\epsilon v_\epsilon)^p - u_\mu^p - t_\epsilon^p v_\epsilon^p]v_\epsilon dx = 0 .$$

This will follows by the same procedure as in [BK] (p465–466) by observing first that for all $\delta > 0$, $\exists C_\delta > 0$ such that

$$|f(x, u)| \equiv |(u_\mu + u)^p - u_\mu^p - u^p| \leq \delta u^p + C_\delta u ,$$
for all \(u > 0 \). This follows easily from the boundedness of \(u_\mu \). Indeed for \(u \geq \frac{1}{\delta} \), we have

\[
|f(x, u)| = u^p \int_0^{u_\mu} ((s + 1)^{p-1} - s^{p-1}) ds \leq C u^p
\]

for some constant \(C \). For \(u \leq \frac{1}{\delta} \) we have

\[
|f(x, u)| \leq \frac{(u_\mu + u)^p - u_\mu^p}{u} u + u^p \\
\leq p(u_\mu + u)^{p-1} + \left(\frac{1}{\delta} \right)^{p-1} \\
\leq C u.
\]

It then follows that a positive constant \(C \), independent of \(\epsilon \), exists such that

\[
\sup_{t \geq 0} J_\mu(tv_\epsilon) \leq \frac{1}{N} \|K\|_\infty \left(\sum_{j=1}^{2N} \left(2^{2N} - 1 \right) \right) - \int_{B_2R} F(x, Cv_\epsilon) dx + 0(\epsilon L)
\]

for sufficiently small \(\epsilon > 0 \). A change of variables yields

\[
\lim_{\epsilon \to 0^+} \epsilon^{-L} \int_{B_2R} F(x, Cv_\epsilon) dx = +\infty
\]

as in [BN].

\[\Box\]

Lemma 4.5. Assume \(H_2 \) and \(H_1 \). Suppose moreover \(0 \not\equiv K(x) \geq 0 \) and \(K(x) \in L^1(\Omega) \). Then problem (4.1)_\mu has at least two solution for each \(\mu \in (0, \mu^*) \) if \(p = \frac{N+2}{N-2} \).

Proof. The conditions for the mountain pass Lemma [BN] are satisfied by Lemma 4.2, 4.3. Hence there is a sequence \(\{v_n\} \subset \mathcal{D}_0^1(\Omega) \) such that \(J_\mu(v_n) \to c \) and \(J'_\mu(v_n) \to 0 \) in \(\mathcal{D}_0^1(\Omega) \) as \(n \to \infty \), where

\[
c = \inf_{\nu \in \Gamma} \sup_{u \in \nu} J_\mu(u).
\]

Thus

\[
J_\mu(v_n) = \frac{1}{2} \int_\Omega |\nabla v_n|^2 dx - \int_\Omega \left[\frac{1}{p+1} K(x)(u_\mu + v_n^+)^{p+1} - \frac{1}{p+1} w_\mu^{p+1} - u_\mu^p v_n^+ \right] dx = c + o(1),
\]

and

\[
J'_\mu(v_n)\psi = \int_\Omega \nabla v_n \nabla \psi dx - \int_\Omega K((u_\mu + v_n^+)^p - u_\mu^p) \psi dx = o(1) \|
\psi\|
\]
as \(n \to \infty \) and \(\psi \in D_0^1(\Omega) \). Choose \(\frac{1}{p+1} < \theta < \frac{1}{2} \) and \(\psi = v_n \). It follows from (4.2), (4.3) that
\[
c + o(1) \geq \frac{1}{2} \int_\Omega |\nabla v_n|^2 \, dx - \frac{1}{p+1} \int_\Omega K(u_\mu + v_n^+)^p \, dx
\]
\[
= \left(\frac{1}{2} - \theta \right) ||v_n||^2 + \theta(||v_n||^2 - \int_\Omega K[(u_\mu + v_n^+)^p - u_\mu^p]v_n \, dx)
\]
\[
+ \left(\theta - \frac{1}{p+1} \right) \int_\Omega K(x)(u_\mu + v_n^+)^p v_n^+ \, dx - \theta \int_\Omega K u_\mu^p v_n^+ \, dx
\]
\[
= \left(\frac{1}{2} - \theta \right) ||v_n||^2 + o(1)||v_n||
\]
\[
+ \left(\theta - \frac{1}{p+1} \right) \int_\Omega K(x)(v_n^+ - \tau u_\mu)(u_\mu + v_n^+)^p \, dx
\]
\[
- \theta \int_\Omega K(x) u_\mu^p v_n^+ \, dx ,
\]
where \(\tau = (p+1)^{-1}(\theta - (p+1)^{-1})^{-1} \). Notice that we have used the obvious equality
\[
\int_\Omega K(x)((u_n + v_n^+)^p - u_\mu^p)v_n \, dx = \int_\Omega K[(u_\mu + v_n^+)^p - u_\mu^p]v_n^+ \, dx .
\]
Using Hölder’s and Sobolev’s inequality we have
\[
\int_\Omega K u_\mu^p v_n^+ \, dx \leq ||u_\mu||_\infty^p \int_\Omega K(x)v_n^+ \, dx
\]
\[
\leq C \left(\int_\Omega K(x)^2 \, dx \right)^{1/2} \left(\int v_n^{+2} \, dx \right)^{1/2}
\]
\[
\leq C_1 ||v_n^+||
\]
for some constant \(C > 0 \).

Because \(g(x) = (s - \tau u_\mu)(u_n + s)^p \) gets its minimum at
\[
s = \frac{p\tau - 1}{1+p}
\]
we have
\[
c + o(1) \geq \left(\frac{1}{2} - \theta \right) ||v_n||^2 + o(1)||v_n||
\]
\[
- \frac{2(p(1+\tau))(\theta(p+1) - 1)}{(p+1)^{p+2}} \int_\Omega K(x) u_\mu^{p+1} \, dx
\]
\[
- \theta C_1 ||v_n||
\]
since $\|u_\mu\|_{L^\infty}$ is bounded, $K(x) \in L^1(\Omega)$. From the above inequality we can deduce \{v_n\} is bounded in $D_0^1(\Omega)$. Standard embedding theorem then show that \{v_n\} has a subsequence, still denoted by \{v_n\} for which

$$v_n \rightharpoonup v \text{ weakly in } D_0^1(\Omega)$$

$$v_n \to v \text{ a.e. in } \Omega$$

$$v_n \rightharpoonup v \text{ weakly in } L^{p+1}(\Omega)$$

It follows from (4.2) and (4.3) that v is a weak solution of

$$-\Delta v = K(x)[(u_\mu + v^+)^p - u_\mu^p] \quad v \in D_0^1(\Omega)$$

Furthermore, (4.3) with $\psi = v^-$ implies that $\int_\Omega |\nabla v^-|^2 \, dx = 0$ and therefore $\int_\Omega |v^-|^{p+1} \, dx = 0$, by Sobolev embedding. This shows that $v \geq 0$ a.e. in Ω, we show next that $v \not\equiv 0$.

Consider the sequence \{w_n\}, $w_n = v_n - v$, for a subsequence of \{w_n\}, denoted the same way, we define

$$\ell = \lim_{n \to \infty} \|w_n\|^2.$$

If $\ell = 0$, the continuity of J_μ on $D_0^1(\Omega)$ implies that

$$0 < \alpha \leq c = \lim_{n \to \infty} J_\mu(v_n) = J_\mu(v) \quad \text{and hence } v \not\equiv 0.$$

If $\ell > 0$, we proceed as follows. Using (4.3) with $\psi = v_n$, the boundedness of $\|v_n\|$, the weak convergence of v_n to v in $L^{p+1}(\Omega)$ and the fact that $u_\mu \in L^\infty(\Omega)$, $K(x) \in L^{\frac{n+1}{p}}$ we obtain

$$\int_\Omega K(x)(u_\mu + v_n)^p u_\mu \, dx \to \int_\Omega K(x)(u_\mu + v)^p u_\mu \, dx$$

$$\int_\Omega K(x)u_\mu^p v_n \, dx \to \int_\Omega ku_\mu^p v \, dx.$$

We have

$$\int_\Omega |\nabla v_n|^2 \, dx - \int_\Omega K(x)(u_\mu + v_n^+)^{p+1} \, dx + \int_\Omega K(u_\mu + v)^p u_\mu \, dx + \int_\Omega K(x)u_\mu^p v \, dx = o(1). \quad (4.4)$$

Using a lemma of Bresis and Lieb [BL] and (4.4) we obtain

$$\int_\Omega |\nabla w_n|^2 \, dx + \int_\Omega |\nabla v|^2 \, dx - \int_\Omega K(x)(v_n^+ - v)^{p+1} \, dx$$

$$= \int_\Omega K(x)((u_\mu + v)^p - u_\mu^p) v \, dx + o(1).$$
Since \(v \) is a solution of problem (4.1), we have

\[
\int_{\Omega} |\nabla w_{n}|^2 dx = \int_{\Omega} K(x)(v^+ - v)^{p+1} dx + o(1). \tag{4.5}
\]

Using (4.3) and Bresis-Lieb Lemma [BL] we also have

\[
o(1) + c = \frac{1}{2} \int_{\Omega} |\nabla w_{n}|^2 dx + \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \frac{1}{p+1} \int_{\Omega} K(x)w_{n}^{p+1} dx \\
- \frac{1}{p+1} \int_{\Omega} K(x)(u_{\mu} + v)^{p+1} dx + \frac{1}{p+1} \int_{\Omega} K(x)u_{\mu}^{p+1} dx + \int_{\Omega} K(x)u_{\mu}^p v dx \\
= \frac{1}{2} \int_{\Omega} |\nabla w_{n}|^2 dx - \frac{1}{p+1} \int_{\Omega} K(v_{n}^+ - v)^{p+1} dx + J_{\mu}(v).
\]

which gives us

\[
o(1) + c = \frac{1}{2} \int_{\Omega} |\nabla w_{n}|^2 dx - \frac{1}{p+1} \int_{\Omega} K(v_{n}^+ - v)^{p+1} dx + J_{\mu}(v). \tag{4.6}
\]

It follows from (4.5) and (4.6) that

\[
c = \frac{1}{N} \ell + J_{\mu}(v).
\]

We also have by Sobolev’s inequality and (4.5) that

\[
\int_{\Omega} |\nabla w_{n}|^2 dx \geq S \left(\int_{\Omega} |w_{n}|^{p+1} dx \right)^{\frac{2}{p+1}} \\
\geq S \left(\int_{\Omega} |v_{n}^+ - v|^{p+1} dx \right)^{\frac{2}{p+1}} \\
\geq \left(\frac{1}{\sup_{\Omega} K(x)} \right)^{\frac{2}{p+1}} S \left(\int_{\Omega} K(x)(|v_{n}^+ - v|^{p+1}) dx \right)^{\frac{2}{p+1}} \\
= \left(\frac{1}{\sup_{\Omega} K} \right)^{\frac{2}{p+1}} S(\|w_{n}\|^2 + o(1))^{\frac{2}{p+1}}
\]

which gives in the limit, as \(n \to \infty \), the inequality

\[
\ell \geq \left(\sup_{\Omega} K(x) \right)^{-\frac{2}{p+1}} S \ell^{\frac{2}{p+1}} \tag{4.8}
\]

since \(\ell > 0 \), (4.7) and (4.8) give

\[
c \geq \frac{1}{N} \left(\sup_{\Omega} K(x) \right)^{\frac{2}{p+1}} S^\frac{2}{p+1} + J_{\mu}(v) \tag{4.9}
\]

which implies from Lemma 4.4 that \(J_{\mu}(v) < 0 \), thus \(v \not\equiv 0 \). \(\square \)

From the above lemmas we conclude the theorem 1.2.
References

[DLZ] Y.-B. Deng, Y. Li and X.-J. Zhao, Multiple solutions for an inhomogeneous semilinear elliptic equation in \mathbb{R}^n, preprint.

[G] C.-F. Gui, Entire Positive Solutions of Equation $\Delta u + F(x, u) = 0$ J.D.E., 1993

REFERENCES

