Characterization and Analysis of $PCS1$ Gene from Wheat

Haris Ahmed Khan
University of Agriculture, Faisalabad, Pakistan, harisniazi005@gmail.com

Ayaz Ahmad
University of Agriculture, Faisalabad, Pakistan

Sehar Nawaz
University of Agriculture, Faisalabad, Pakistan

Follow this and additional works at: http://corescholar.libraries.wright.edu/jbm

Part of the [Biology Commons](http://corescholar.libraries.wright.edu/jbm), and the [Physical Sciences and Mathematics Commons](http://corescholar.libraries.wright.edu/jbm)

Recommended Citation

This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
CHARACTERIZATION AND ANALYSIS OF PCS1 GENE FROM WHEAT

Haris Ahmed Khan*, Ayaz Ahmad, Sehar Nawaz

Department of Biotechnology, University of Agriculture Faisalabad, Pakistan

*Email: harisniazi005@gmail.com

ABSTRACT

Wheat (Triticum aestivum) is an important cereal crop grown worldwide on large areas. Yields of wheat are decreasing worldwide due to heavy metal contamination. A number of genes have been characterized as those that confer tolerance to cadmium stress. PCS1 is one of them. Phytochelatins have a key role in the detoxification of heavy metals in plants. However, the mechanism behind the detoxification remains unknown and wheat genes related to detoxification have not yet been identified. Here we report the isolation of cDNA encoding of phytochelatin synthase (PCS) from wheat (var. Galaxy 2013). The AtPCS1 cDNA sequence contained 833 bp and encodes 277 amino acid proteins having a molecular weight of 55kDa. Multiple alignment and phylogenetic analyses were conducted by using bioinformatic tools. AtPCS1 was most related to the Hordeum vulgare PCS1 gene (AK372435.1) as they were clustered in the same clade. This gene could be helpful in making transgenic crops which will help in phytoremediation.

Keywords: Cadmium, glutathione, heavy metal, phytochelatin synthase (PCS)

INTRODUCTION

Wheat (Triticum aestivum) is of immense importance as a cereal crop and has been used as a staple food for many countries on the globe for the last eight thousand years. There is a range of factors which limit its maximum productivity, including heavy metal toxicity. Increasing soil pollution is also contributing significantly to low yields in peri-urban areas (Munzuroglu and Geckil 2002, Kahl, et al. 2015). The final yield of wheat decreases when grown in cadmium stress (Savaghebi, et al. 2002). The accumulation of heavy metals in the food chain can cause the death of an organism. Cadmium is highly toxic due to its highly soluble nature in water (Lockwood 1976, Ming et al. 2016).

The occurrence of phytochelatins is ubiquitous in plants (Gekeler, et al. 1989, Ariani, et al. 2015). They have the ability to link with metal ions, specifically with cadmium. Phytochelatins are also produced in higher plants in response to cadmium exposure. Phytochelatins, which are peptides which bind with heavy metals produced enzymatically from glutathione, have an important part in providing protection from heavy metal stresses (Chaurasia, et al. 2008). The basic structure of PCs is (γ-Glu-Cys)n-Gly, here n = 2 to 11 (Ramos, et al. 2008). They are cysteine rich peptides (Grill, et al. 1985, Rauser 1990). PCs also have a role in protecting the plant from the dangerous effects of other heavy metals, i.e. cadmium (Cd), arsenic (As) and lead (Pb). The phytochelatin biosynthesis pathway is shown in Fig.1 (Inouhe 2005). Phytochelatins have also been identified in Arabidopsis thaliana, S. pombe, Triticum aestivum, C. elegans, (Clemens, et al. 1999, Ha, et al. 1999, Vatamiunik, et al. 1999, Cobbett 2000a, b; Clemens 2001) algae, fungi (including Schizosaccharomyces pombe), in worms (Caenorhabditis elegans) (Ha, et al. 1999),
Brassica juncea (Heiss, et al. 2003, Jung, et al. 2014), and in other species, such as the slime mould, Dictyostelium discoideum (Cobbett 1998), Lactuca sativa (He, et al. 2005), and Lotus japonicus (Ramos et al. 2008). The synthesis of phytochelatins is accomplished by the help of the phytochelatin synthase enzyme (PCS) from substrate

![Figure 1: Simplified schematic representation of the Phytocheatin biosynthesis pathway (Inouhe 2005).]

GCS: Gama-Glutamylcysteine Synthase; GSH: Glutathione Synthetase; PCS: Phytochelatin Synthase.

After synthesis of phytochelatins, they bind with heavy metal ions and help in the facilitation and transportation in the form of complexes into the vacuoles of the cell (Clemens 2006, Ming, et al. 2016). In the vacuoles, they form high molecular weight complexes with phytochelatins, which is the mechanism of homeostasis in response to metal stress (DalCorso et al. 2008).

With a goal of identifying the genes involved in the detoxification of heavy metals, we isolated and cloned the cDNA of the PCS1 gene from T. aestivum. The main objective of this research was to find out the sequence of the required fragment of the PCS1 gene for multiple alignment and phylogenetic analysis. Sequence analysis showed close relationships with Triticum aestivum, Hordeum vulgare, and Oryza sativa Japonica. This information will be useful for the development of transgenic plants with improved tolerance to cadmium stress by over expressing this gene. Such transgenic plants will be helpful in the phytoremediation of Cd polluted soil.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Seeds of Wheat (Triticum aestivum) Galaxy 2013 were collected from the Ayub Agricultural Research Institute, Faisalabad, Pakistan, and were rinsed thoroughly with distilled water and covered by sand under 4°C for 60 days. After sterilizing with NaClO at 50% (v/v) (5% active Cl2) for ten min, seeds were planted in pots with quartz sand as the matrix. When the fourth true leaf fully expanded, uniform plantlets were
transferred to deionized water containing 20 μM cadmium sulfate (CdSO4, Sigma- Aldrich, St. Louis, MO), 20μM zinc sulfate (ZnSO4, Sigma-Aldrich), 20μM copper sulfate (CuSO4, Sigma-Aldrich), 200μM BSO (SigmaAldrich), 200μM GSH (Sigma- Aldrich), and 20μM CdSO4 for 24 hrs. (25°C). Plantlets grown in deionized water for 24 hrs. were used as a control. The roots, stems and leaves were then collected for gene isolation (Chang, et al. 2012).

RNA Extraction

Total RNA was extracted from leaf, stem and root samples using RNA-Sepasol (NACALAI TESQUE, INC.) following the manufacturer’s instructions and was followed by chloroform extraction and isopropanol precipitation.

cDNA Synthesis and Amplification:

RT-PCR was manipulated using mRNA Selective PCR Kit (Thermo Scientific kit). PCR reactions using equal amounts of RNA samples were performed. First strand cDNA was synthesized using Oligonucleotide primers; PCS1LP (5’CAGACCACCATCCACGACTT3’), PCS1-RP (5’ AAAGGGAATGAACAGGCTGT 3’) of the PCS1 gene was designed from a previously reported sequence (accession no. AF093752.1) for its amplification from wheat. The cDNA synthesized from isolated RNA was used as a template. PCR was performed with denaturing for 1 min at 94°C, annealing for 1 at 55°C and extending for 1 min at 72°C. The final extension was at 72°C for 3 min. The cycle was repeated 30 times using cDNA.

The PCR product was electrophoresed in TAE buffer (0.5X) (0.45 mM Tris-acetate, 1 mM EDTA) and 1% agarose gel and the amplified fragments were visualized under the Gel Documentation apparatus. The desired fragment was excised from the gel with a sterilized surgical knife (Feather Safety razor, Japan) under a UV Transilluminator.

Cloning

The desired DNA fragment was eluted from the gel by using a Thermo Scientific Gel elution kit (Kit # ICO691) according to the manufacturer’s instructions. The top 10 strains of E. coli were used to prepare competent E. coli cells. Amplified and purified fragments were cloned into a TA- vector (TA- Cloning kit Fermentas). Transformation of competent cells of E. coli was done by using the heat shock method of transformation. For this purpose, 3 µl of the ligation mixture was added in 50 µl of competent cells and placed on ice for 30 minutes. Then the mixture was placed on a heat block adjusted to 42°C for 60-90 seconds. Again it was placed on ice for 10 minutes and 200 µl of liquid LB was added to the mixture. This mixture was incubated at 37°C for 45 minutes to let the cells grow. These cells were spread over the surface of the LB agar plates containing antibiotic ampicillin, X-gal and IPTG using a sterile bent glass rod. The plates were left at room temperature until the liquid had been absorbed. The plates were sealed, inverted and incubated at 37°C overnight. Blue white colonies appeared in 12 hours. Pure white colonies were picked and streaked to get fresh colonies. These transformed colony samples were used to perform colony PCR. Denaturation proceeded at 94°C for 1 minute, annealing 55°C for 1 minute, extension 72°C for 1 minute, and final Extension 72°C for 3 minutes. PCR positive colonies were selected and used for plasmid DNA isolation by using a plasmid isolation kit (QiaGen Science, USA). Plasmid DNA
was purified by using the polyethylene glycol precipitation method with some modifications (Sambrook et al. 1989).

Computer analyses

Sequencing was performed at the Molecular Biology Product Incorporation, Pakistan. Plasmid DNA samples were sequenced by different primers. The sequence of these standard primers is given as follows: VectorF (TATAAAACGACGGCCAGT) and VectorR (CAGGAAACAGCTATGACC). Comparisons were conducted by using bioinformatics tools such as: BLAST (nucleotide and amino acid) at the National Centre for Biological Information (http://www.ncbi.nlm.nih.gov), ClustalW, JustBio and Expasy softwares. A phylogenetic tree was constructed by using phylogeny.fr software.

RESULTS AND DISCUSSION

The toxic effects of Cd on plant morphological and physiological processes have been extensively studied using different species or different varieties (cultivars) of the same species (Sanita di Toppi and Gabbrielli, 1999, Wu, et al. 2007, Ekmekci, et al. 2008). Exposure of plants to toxic metals can lead to numerous physiological and biochemical disorders. The inhibition of plant seedling growth can be regarded as general responses associated with heavy metal toxicity (Kopyra et al. 2003). To overcome such toxicity, plants use phytochelatin biosynthetic pathways to adapt to Cd stress. Numerous studies have investigated the mechanisms of the Cd tolerance of plants (Clemens, 2001, Hall 2002, Li et al. 2016).

For the amplification of the PCS1 gene, RNA was isolated from wheat (*Triticum aestivum*). Quantitative and qualitative analysis of extracted RNA were performed by using a spectrophotometer and gel electrophoresis, respectively. From this RNA, cDNA was produced, which was then used as a template for PCR amplification using gene specific primers. The result showed an amplification of PCS1 gene fragments of 833bp (compared with 1kb gene ruler) as shown in figure 2. Amplified DNA fragments were eluted from gel cloned into T.A cloning vector. After that, the vector was inserted into *E. coli* competent cells. For the blue white selection, colonies were grown and incubated over night at 37°C as shown in figure 3. Blue and white colonies appeared within twelve hours on L.B agar plates. Colony PCR was performed to analyze and confirm white colonies carrying recombinant plasmid. All of the white colonies were marked with consecutive numbers and positive clones were confirmed by colony PCR using PCS1 specific primers. The result confirmed PCS1 clones (Fig. 3). PCS1 recombinant colonies were cultured in the LB medium containing ampicillin for eight hours. Plasmid DNA was isolated from these E. coli cells and used for the sequencing purpose.

Figure 2: Gel electrophoresis of PCR amplified PCS1 fragment. Gene specific
primers were used for the amplification. PCR product was electrophoresed in 1.5% agarose gel in TBE buffer. Lane 1: 1000 bp ladder marker, Lane 2: PCR product.

Figure 3: Blue white screening of PCS1 clone fragment after cloning.

Nucleotide Blast (NCBI) and Justbio translator were used for this purpose. For this fragment, similarity to the corresponding genes from other species was detected. In comparison with some related, previously reported sequences, each fragment exhibited high homology to the corresponding gene from other species in nucleotide sequences. The alignment of the deduced nucleotide and amino acid sequence of the PCS1 clone showed homology to the wheat PCS1 gene, *Hordeum vulgare* PCS1 gene (AK372435.1), and *Oryza sativa* PCS1 gene (AK071958.1). Multiple alignment is also shown in figure 5. There was no intron in the deduced amino acid sequence.

The amplified nucleotide and deduced amino acid sequence of wheat PCS1 gene is given in Fig 4. Protein and

Haris Ahmed Khan et al.,: PCS1 Gene from wheat

Figure 4: Nucleotide and amino acid sequence of PCS1 clone. The amino acid sequence is shown in the single letter code below the nucleotide sequence. Justbio software was used for this analysis. Gene specific primers are shown with an arrow.
Hordeum

GAGGAAGGTGGATCAAGCTTGAGCAACGAGGAGAAAGAAAGGCTTGCTTTGAAGGAAAAA

Oryza

ATATCTACAGCAAGTCCTCCGTGATACCTGAGCTTATTAGATTATGCTCCGTAACCTGCAATTCCT

Triticum

GTATTTACGCAAATTTCCGTGATCTGCTATCTTCTACAGGTAGTCCAGAGTTGAGCTGCTTT

Hordeum

GTTATTACAGCAAATCCGTGATACTGATCTTTTCAGAATAGTTCACGAACTGCAATATCCC

Oryza

AAAGCAGCCATGTGTTGAGTACGATGAAGCCTTGTATCAATTCAAGAGTTGAGCTGCTTT

Triticum

AAAGGGGCTATGTTGAGTACGATGAAGCCTTGTATCAATTCAAGAGTTGAGCTGCTTT

Hordeum

AAAGGGGCTATGTTGAGTACGATGAAGCCTTGTATCAATTCAAGAGTTGAGCTGCTTT

Oryza

GCCACTGTGTCGTACAGAGGCTGATCTCCTGCTTACATGACCTGACATGCTGCTTT

Triticum

GCCACTGTGTCGTACAGAGGCTGATCTCCTGCTTACATGACCTGACATGCTGCTTT

Hordeum

GCCACTGTGTCGTACAGAGGCTGATCTCCTGCTTACATGACCTGACATGCTGCTTT

Oryza

CAATCTGCTGATGCTTAAGGAGGTGAGCCTGCTATCAGAGTTGAGCTGCTTT

Triticum

CAATCTGCTGATGCTTAAGGAGGTGAGCCTGCTATCAGAGTTGAGCTGCTTT

Hordeum

CAATCTGCTGATGCTTAAGGAGGTGAGCCTGCTATCAGAGTTGAGCTGCTTT

Oryza

GTCTGTTACAGGAGAGTACGATGACCGCTTGTATCAATTCAAGAGTTGAGCTGCTTT

Triticum

GTCTGTTACAGGAGAGTACGATGACCGCTTGTATCAATTCAAGAGTTGAGCTGCTTT

Hordeum

GTCTGTTACAGGAGAGTACGATGACCGCTTGTATCAATTCAAGAGTTGAGCTGCTTT
Haris Ahmed Khan et al.: PCS1 Gene from wheat

Figure 5: Multiple alignment of the nucleotide sequence of PCS1 clone with Hordeum vulgare PCS1 and Oryza sativa Japonica PCS1 genes.

To investigate the evolutionary relationships among PCS1 and other related genes in different crop species in plants (as revealed by Shen, et al. 2010 and Li, et al. 2009), the phylogenetic tree was constructed on the basis of a nucleotide similarity using phylogeny fr. software (Fig.6). The nucleotide sequence homology is shown in table 1. The result showed that the plant PCS1 genes are clearly divided into three distinct clusters. For PCS1, monocots: Zea mays, Brassica rapa and Pteris vittata. For Dicots: Nicotiana tabacum, Populus trichocarpa, Allium sativum, Typha latifolia, Oryza sativa Japonica, Cynodon dactylon, Paspalum vaginatum, Setaria italica, Phragmites australis, Triticum aestivum, and Hordeum vulgare. AtPCS1 was closely related to the Hordeum vulgare PCS1 gene (GenBank accession no AK372435.1) and was clustered in same clade. Citrus, clementine (XM_006443729.1) and Glycine max (NM_001248647.1) were at a distance from these groups. It is concluded that genes which have been cloned from wheat share a common evolutionary ancestor with the other related PCS1 gene in plants (Hordeum vulgare, Oryza sativa, Pteris vittata).

<table>
<thead>
<tr>
<th>Crop Name</th>
<th>Gene</th>
<th>Accession No.</th>
<th>Nucleotide Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triticum aestivum</td>
<td>PCS1</td>
<td>AF093752.1</td>
<td>100%</td>
</tr>
<tr>
<td>Hordeum vulgare</td>
<td>PCS1</td>
<td>AK3735.1</td>
<td>96%</td>
</tr>
<tr>
<td>Oryza sativa Japonica</td>
<td>PCS1</td>
<td>AK071958.1</td>
<td>88%</td>
</tr>
<tr>
<td>Pteris vittata</td>
<td>PCS1</td>
<td>HM559480.1</td>
<td>88%</td>
</tr>
<tr>
<td>Phragmites australis</td>
<td>PCS1</td>
<td>JX826285.1</td>
<td>84%</td>
</tr>
<tr>
<td>Zea mays</td>
<td>PCS1</td>
<td>Eu975366.1</td>
<td>82%</td>
</tr>
</tbody>
</table>

Table 1. Nucleotide Sequence homology of wheat PCS1 gene with genes of other crops.
<table>
<thead>
<tr>
<th>Species</th>
<th>Gene</th>
<th>Accession</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brassica rapa</td>
<td>PCS1</td>
<td>GU971084.1</td>
<td>82%</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>PCS1</td>
<td>AF384111.2</td>
<td>79%</td>
</tr>
<tr>
<td>Paspalum vaginatum</td>
<td>SPCT2</td>
<td>KT203454.1</td>
<td>79%</td>
</tr>
<tr>
<td>Setaria italica</td>
<td>PCS1</td>
<td>KM_004968528.3</td>
<td>79%</td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>CAD1</td>
<td>AY235426.1</td>
<td>72%</td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>PCS1</td>
<td>AF308658.3</td>
<td>70%</td>
</tr>
<tr>
<td>Populus trichocarpa</td>
<td>PCS1</td>
<td>XM_002320590.2</td>
<td>69%</td>
</tr>
<tr>
<td>Allium sativum</td>
<td>PCS1</td>
<td>AF384110.1</td>
<td>69%</td>
</tr>
<tr>
<td>Citrus clementine</td>
<td>PCS1</td>
<td>XM_006443729.1</td>
<td>69%</td>
</tr>
<tr>
<td>Glycine max</td>
<td>PCS1</td>
<td>NM_001248647.1</td>
<td>69%</td>
</tr>
</tbody>
</table>

![Download Phylogenetic Tree Data](image_url)
Figure 6: Phylogenetic tree of nucleotide sequences among the genes from other crops similar to Wheat PCS1 gene. The tree was constructed using phylogeny.fr.software

Conclusion

This analysis clearly demonstrated that a cloned and sequenced fragment is the wheat PCS1 gene which has a close relationship with Hordeum vulgare, Oryza sativa Japonica, Pteris vittata, Zea mays, Brassica rapa, and Phragmites australis. Glycine max and Citrus clementina showed less homology with cloned wheat PCS1. The cloned wheat PCS1 gene will provide opportunities to understand its role wheat phytochelatin biosynthesis pathway, and open new ways to improve wheat tolerance to heavy metal stresses. By manipulating this gene and genetically engineering the crop for the benefits of human and animals, PCS1 may prove helpful in phytoremediation purposes.

Acknowledgements

This study was funded by University of Agriculture Faisalabad, Center of Agricultural Biochemistry and Biotechnology (CABB) Pakistan.

REFERENCES

Lockwood (1976). Longevity and reproduction of Daphnia pulex (de Geer) exposed to cadmium-contaminated food or water. Environmental Pollution. 19: 295-305.

