Deep Traps in Molecular-Beam-Epitaxial GaAs Grown at Low Temperatures

David C. Look
Wright State University - Main Campus, david.look@wright.edu

Z-Q. Fang

H. Yamamoto

J. R. Sizelove

M. G. Mier

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation
https://corescholar.libraries.wright.edu/physics/127

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Authors
Deep traps in molecular-beam-epitaxial GaAs grown at low temperatures

D. C. Look, Z.-Q. Fang, and H. Yamamoto
University Research Center and Physics Department, Wright State University, Dayton, Ohio 45435

J. R. Sizelove, M. G. Mier, and C. E. Stutz
Solid State Electronics Directorate, Wright Laboratory, W/ELRA, Wright-Patterson Air Force Base, Ohio 45433

(Received 18 February 1994; accepted for publication 23 March 1994)

Deep-level transient spectroscopy has been performed on Si-doped GaAs layers grown by molecular-beam epitaxy at substrate temperatures of 400–450 °C. The λ effect is taken into account and overlapping peaks are analyzed numerically. An 0.65 eV electron trap of concentration \(2\times10^{16}\) cm\(^{-3}\) is believed to be related to the As\(_{Ga}\)-associated 0.65 eV Hall-effect center, and also to the trap EB4 found in electron-irradiated GaAs.

I. INTRODUCTION

Molecular-beam-epitaxial (MBE) GaAs grown at temperatures \(T_G\) well below the normal growth temperatures, 580–600 °C, has unique properties because of high concentrations of point defects, such as As antisites (As\(_{Ga}\)) and Ga vacancies (see reviews in Refs. 1, 2, and 3). These defects have been studied by many different types of experiments, such as electron paramagnetic resonance,\(^4\)–\(^6\) absorption,\(^7\)–\(^8\) Hall effect,\(^9\)–\(^10\) photoluminescence,\(^11\)–\(^12\) thermally stimulated current,\(^13\) and positron annihilation.\(^14\) However, one of the most common forms of defect studies, namely deep-level transient spectroscopy (DLTS), has been applied sparingly,\(^15\)–\(^16\) because the creation of a conductive layer by doping is difficult for \(T,G<400\) °C, and also because Schottky barriers tend to be leaky in the presence of high quantities of deep-level defects. Thus, e.g., DLTS cannot be used to study 200–250 °C material, which is commonly used for low-temperature (LT) GaAs device fabrication.\(^17\)

In this investigation we have used DLTS to analyze samples grown at 400, 450, and 560 °C. Because our apparatus, a BioRad DL4600, obtains and analyzes data by means of the simple, dual-gate, boxcar technique, it was necessary to use a numerical approach to get accurate results for two of the strong peaks which were overlapping. Also, because the energy levels were deep, the so-called λ effect was included in the analysis.\(^18\)–\(^20\) Two of the observed DLTS levels have concentrations greater than \(10^{16}\) cm\(^{-3}\) and there is evidence that at least one of them is related to As\(_{Ga}\).

II. ANALYSIS

We assume a semiconductor sample which contains shallow (fully ionized) donors of concentration \(N_D\), acceptors of concentration \(N_A\) all with transition energies below that of the shallow donor, and a deep donor trap with a \((0^+/+)\) transition energy \(E_T\) and concentration \(N_T\). In the DLTS experiment, the sample is subjected to a reverse bias \(V_r\) (a negative number) for a long time, then a trap-filling forward bias \(V_f\) is applied for a short time (pulse), and finally the reverse bias is reapplied. The reverse bias depletes the free carriers to a depth \(w_r\), below the surface, and the deep trap to a depth \(w_T,\lambda\), where\(^19\)–\(^20\)

\[
\lambda = \frac{2 e (E_T - E_{Cn} - 2kT)}{e^2 (N_D - N_A)}.
\]

where \(E_{Cn}\) is the conduction band energy with respect to the Fermi level at \(z = \infty\). Here \(e\) is the dielectric constant and it is assumed that the depletion approximation is valid. The depletion capacitance at reverse bias is \(C_0 = \varepsilon A / w_r\), where \(A\) is the Schottky barrier area. The forward bias pulse will decrease the depletion depth to \(w_f\) and will fill the deep traps in an additional region (toward the surface) of width \(\Delta \lambda\), where \(\Delta \lambda = w_T - w_f\). Immediately after the pulse, the depletion depth will be increased from its original value \((w_r,\lambda)\) by \(\Delta w_T\), because more positive charge is needed from the shallow donors to balance the positive charge lost from the deep traps which were neutralized during the pulse. Then, the capacitance will decrease by an amount \(\Delta C\), which can be shown to obey\(^19\)

\[
\Delta C = \frac{\lambda}{C_0} = \frac{1}{\{1 + \lambda [N_T(w_f,\lambda)/N_D^{net}(w_f)]\}^{1/2} - 1} - \frac{1}{\{1 + \lambda [N_T(w_f,\lambda)/N_D^{net}(w_f)]\}^{1/2} - 1}
\]

where \(N_D^{net} = N_D - N_A\) and

\[
f_\lambda = \left(1 - \frac{\lambda}{w_r}\right)^2 - \left(1 - \frac{\lambda}{w_T,\lambda}\right)^2
\]

\[
= \left\{1 - \left(\frac{E_T - E_{Cn} - 2kT}{V_B - V_f}\right)^{1/2}\right\}^{1/2} - \left\{\frac{V_B}{V_B - V_f}\right\}^{1/2}
\]

\[
- \left\{1 - \left(\frac{E_T - E_{Cn} - 2kT}{V_B - V_f}\right)^{1/2}\right\}^{1/2}
\]

Here \(V_B = \phi_B - E_{Cn}/e - kT/e\), where \(\phi_B\) is the Schottky barrier potential, about 0.7 V, and \(E_{Cn} = 0.034\) eV for \(T = 296\) K and \(N_D - N_A = 1 \times 10^{17}\) cm\(^{-3}\). Typically, \(V_f = -1.0\) V and \(V_f = 0\). To derive Eqs. (2) and (3), it must be assumed that \(N_T\) is constant in the region \(w_T - \lambda\) \(- \Delta \lambda < z < w_T - \lambda\), and \(N_D\) constant in \(w_r < z < w_T + \Delta w_T\). If \(f_\lambda [N_T(w_f,\lambda) \approx N_D^{net}(w_f)]\), then Eq. (2) can be written

\[
\frac{\Delta C}{C_0} = f_\lambda \frac{N_T(w_f,\lambda)}{2N_D^{net}(w_f)}.
\]

\(^a\)Permanent address: Japan Energy Corporation, 3-37-35, Nizuo-Minami, Toda, Saitama 335, Japan.
In most analyses of DLTS spectra it is assumed that $f_{\lambda}=1$, and therefore that the criterion for the validity of Eq. (4) is $N_T \ll N_D$; however, this criterion is often far too strong, since values of $f_{\lambda} \approx 0.1$ are not unusual for deep centers. Note also that in such cases the calculated trap concentration N_{λ} will be severely underestimated if f_{λ} is assumed to be unity.

The criterion $f_{\lambda} N_T \ll N_D^{\text{net}}$ holds for the sample studied here and, thus, Eq. (4) applies. The time dependence of ΔC after the pulse will be given by

$$\frac{\Delta C}{C_0} = f_{\lambda} N_T \frac{2 N_D^{\text{net}}}{2 N_D} e^{-e_{\lambda} t_1},$$

where we have assumed that N_D and N_T are constant and where e_{λ}, the emission rate, is given by

$$e_{\lambda} = G_{0} T \sigma_{0} \exp(-E_{T0} + E_{\sigma})/kT. \tag{6}$$

Here, $G_{0} \approx 2 \times 10^{20} \text{ s}^{-1} \text{ cm}^{-2} \text{ K}^{-2}$ for GaAs, g_{0}/g_{1} is the trap degeneracy ratio, α is a temperature coefficient satisfying $E_{\alpha} = E_{T0} - \alpha T$, and the capture section σ_{α} obeys $\sigma_{\alpha} = \sigma_{0} \exp(-E_{\alpha}/kT)$.

Our DLTS apparatus, a BioRad DL4600, uses the common, dual-gate boxcar technique to determine E_{T0} and σ_{α}. That is, the transient $\Delta C(t)$ is sampled at two times, t_1 and t_2, and then the function

$$F(t_1, t_2, T) = C(t_1) - C(t_2) = \Delta C(t_1) - \Delta C(t_2) \tag{7}$$

is plotted versus temperature. From Eqs. (5), (6), and (7), it is seen that if f_{λ} is only a weak function of temperature, then $F(T)$ will go through a maximum at a temperature T_m satisfying the condition

$$\exp(-e_{\alpha} t_2) = \frac{t_1}{t_2} \exp(-e_{\alpha} t_1),$$

where $e_{\alpha} = e_{\alpha}(T_m)$. By using different values of t_1 and t_2, the peaks will shift and different values of $e_{\alpha}(T_m)$ can be calculated. Therefore, the parameters $E_{T0} + E_{\sigma}$ and $(g_{0}/g_{1}) \sigma_{0} \exp(\alpha/k)$, which can be determined from an Arrhenius plot $\ln(e_{\alpha}/T_m^2)$ vs T_m^{-1} of the data.

The “peak” analysis described above is probably the most common technique used to analyze DLTS results, and indeed is the method employed in our commercial spectrometer. Another method is to digitize and analyze the whole line shapes resulting from two different t_1, t_2 pairs, or rate windows. A big advantage of using the full line shape instead of just the peak is that overlapping lines, which shift the peaks, can be analyzed in a straightforward manner. For two traps, A and B,

$$S(T) = 3.07[f_{\lambda} N_{\lambda}(e^{-e_{\lambda} t_1} - e^{-e_{\lambda} t_2}) + f_{\lambda} N_{\lambda}(e^{-e_{\lambda} t_1} - e^{-e_{\lambda} t_2})]. \tag{10}$$

Equation (10) has been used in the results which follow.

III. SAMPLES AND DISCUSSION

Three samples, H37, H38, and G593, are discussed in this study. Samples H37 and H38 were grown to thicknesses of 5 μm at substrate temperatures of 560 and 450 \circC, respectively, in a Varian 360 apparatus with the substrates In bonded to the sample holder; thus, the temperatures, measured by a thermocouple attached to the holder, can be considered to be fairly accurate. The carrier concentration was $1 \times 10^{17} \text{ cm}^{-2}$ from Si doping, in both cases. Sample G593 was grown to a thickness of 2 μm, and a concentration $2 \times 10^{17} \text{ cm}^{-3}$, in a Varian Gen II apparatus at a substrate temperature of 400 \circC; however, in this case the substrate was not In bonded so that the temperature, measured by a thermocouple near to but not touching the sample, is not as accurate. In all cases, the $A_{\text{As}4}/\text{Ga}$ beam equivalent pressure ratio was about 20.

As mentioned earlier, our DLTS apparatus is a commercial BioRad DL4600 instrument which employs the dual-gate boxcar technique. A spectrum for H38, using a rate window $e_{\alpha} \approx 50 \text{ s}^{-1}$ and a reverse bias of -1 V, is shown in Fig. 1. As seen, there are at least four peaks, A, B, C, and D, with characteristics given in Tables I and II. Sample H37 (not shown) displayed only peak A, and at a much lower concentration, about $4 \times 10^{14} \text{ cm}^{-3}$. (Note that the concentrations in Fig. 1 are not corrected for the λ effect, and thus are much too small. The values in Table I are corrected.) Because peaks A and D are small and somewhat overlapping with larger peaks, we have not studied them in detail but have performed only the usual Arrhenius analysis of the peak emission rates, with results given in Tables I and II. Thus, we do not consider the A and D parameters to be accurate. Peaks B and C, on the other hand, are better defined because the concentrations are much higher. However, because of the overlap complications, we have carried out a simultaneous analysis.
least-squares fit of Eq. (10) for two rate windows, 20 and 50 s⁻¹. The results are shown in Fig. 2 and it is seen that the fits are very good. For sample G593, only one major peak (E) was found, and, again, a simple peak analysis was performed to get the parameters found in Tables I and II.

For comparison purposes, in Table II we have listed parameters $E (= E_{\text{T0}} + E_\sigma)$ and σ for certain electron traps which have values $e_n(300 \text{ K})$ within a factor ~ 5 of our $e_n(300 \text{ K})$ values for traps A–E. The actual magnitudes of e_n are important as a comparison because a small error in E can cause a larger error in σ. Thus, to be considered identical, traps should have nearly equal values of E and $e_n(300 \text{ K})$, but not necessarily σ. Using these criteria, trap A might be the same as EB1, B the same as EF1 or EB4, and D the same as EL4. Because the concentrations of traps A–E ($>10^{15}$ cm⁻³) are higher than any impurity concentrations other than that of the dopant Si, and because of the known high concentrations of defects in LT-MBE GaAs layers,¹⁻³,⁸ we believe that these traps are either pure defects or defect-Si complexes. Therefore, since EB4 is defect related (found in e-irradiated GaAs), and EL4 is MBE related, the equalities B=EB4 and D=EL4 seem to be the most likely of the possibilities proposed above.

We next compare with DLTS results from the earlier work of Wood and co-workers¹⁵ and Stall et al.¹⁶ They have identified traps in 430 °C Sn-doped material as EB7 (0.30 eV), EB5 (0.48 eV), and EB3 (0.90 eV), and in 380 °C Ge-doped material as EB6 (0.41 eV), EB5 (0.48 eV), and EB4 (0.71 eV). Although no information on actual emission rates is given, we evidently have agreement at least on EB4, which indeed was their dominant trap in the 380 °C layer. The fact that their layer was doped with Ge, and ours with Si suggests that the specific nature of the donor is irrelevant, although the possible involvement of the donor in a defect-donor complex cannot be ruled out. Much work on ED4 in electron-irradiated GaAs has been carried out in the past, and several workers have concluded that it is a complex,²²⁻²⁴ but a defect-defect complex rather than a defect-donor complex. All of the suggested EB4 complexes involve As₁₈.

Another interesting comparison can be made between the traps reported here and the 0.65 eV Hall-effect center²⁵ found in 350–450 °C GaAs and known to be related to As₁₈. Concentrations of the 0.65 eV center are about 2×10^{12} cm⁻³ in an undoped layer grown at 400 °C on a non-In-bonded substrate. Although this concentration is about an order of magnitude higher than that of traps B, C, or E in the present samples, it is important to note that the concentration of another As₁₈-related center, EL2, is expected to fall rapidly for $n>10^{17}$ cm⁻³. Thus, traps B, C, or E could possibly be associated with the 0.65 eV, As₁₈-related center, with trap B being the best candidate because of the closeness in energy.

<table>
<thead>
<tr>
<th>Trap</th>
<th>T_G (°C)</th>
<th>N_D-N_A (cm⁻³)</th>
<th>N_T (cm⁻³)</th>
<th>$E_{\text{T0}}+E_\sigma$ (eV)</th>
<th>σ_{eff} (cm⁻²)</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>H38-A</td>
<td>450</td>
<td>1×10^{17}</td>
<td>3.5×10^{15}</td>
<td>0.87</td>
<td>2.0×10^{-14}</td>
<td>peak</td>
</tr>
<tr>
<td>H38-B</td>
<td></td>
<td></td>
<td>2.5×10^{16}</td>
<td>0.65</td>
<td>1.5×10^{-15}</td>
<td>line shape fit</td>
</tr>
<tr>
<td>H38-C</td>
<td></td>
<td></td>
<td>2.1×10^{16}</td>
<td>0.50</td>
<td>9.0×10^{-16}</td>
<td>line shape fit</td>
</tr>
<tr>
<td>H38-D</td>
<td></td>
<td></td>
<td>1.1×10^{15}</td>
<td>0.55</td>
<td>6.1×10^{-12}</td>
<td>peak</td>
</tr>
<tr>
<td>*G593-E</td>
<td>400</td>
<td>2×10^{17}</td>
<td>1.1×10^{16}</td>
<td>0.54</td>
<td>4.8×10^{-15}</td>
<td>peak</td>
</tr>
</tbody>
</table>

*Non-In-bonded substrate, so T_G not as accurate.

Further work will be necessary for an absolute identification, but it seems probable that trap B in our Li-GaAs layers is the same as the 0.65 eV LT-GaAs Hall-effect center, and also the same as trap EB4 found in LT-GaAs and in e-irradiated GaAs.

IV. SUMMARY

Several DLTS traps, designated A, D, C, D, and E, have been characterized in MBE GaAs grown at 400 and 450 °C. Because these traps are all deep it was necessary to include the so-called λ effect in the analyses. Furthermore, because the signals for traps B and C were strongly overlapping, it was necessary to carry out a numerical analysis of the coupled line shapes. Three of the traps, B, C, and E, have concentrations greater than 10¹⁶ cm⁻³ and are probably either pure defects or defect-Si complexes. One of these, trap D, has an energy of 0.65 eV and effective capture cross section of 1.5×10⁻¹⁵ cm², and may well be associated with both EB4, found in e-irradiated samples, and with the 0.65 eV Hall-effect center found in LT-MBE material and known to be related to AsGa. From other DLTS results, many workers believe that EB4 is an AsGa-defect complex.

ACKNOWLEDGMENTS

We wish to thank T. A. Cooper, L. V. Callahan, and B. Johnson for sample preparation, and N. Blair and R. Heil for manuscript preparation. D.C.L. was supported under USAF Contract No. F33615-91-C-1/65.