Monte-Carlo Simulation of Bulk Hole Transport in AlxGa1-XAs, in1-XAlxAs, and GaAsxSb1-X

M. J. Martinez
David C. Look
Wright State University - Main Campus, david.look@wright.edu
J. R. Sizelove
F. L. Schuermeyer

Follow this and additional works at: http://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation
http://corescholar.libraries.wright.edu/physics/128

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Monte Carlo simulation of bulk hole transport in Al$_x$Ga$_{1-x}$As, In$_{1-x}$Al$_x$As, and GaAs$_x$Sb$_{1-x}$

Marino J. Martinez\textsuperscript{a)
Solid State Electronics Directorate, Wright Laboratory, Wright–Patterson Air Force Base, Ohio 45433-6543
David C. Look
University Research Center, Wright State University, Dayton, Ohio 45435
John R. Sizelove and Fritz L. Schuermeyer
Solid State Electronics Directorate, Wright Laboratory, Wright–Patterson Air Force Base, Ohio 45433-6543

(Received 23 December 1993; accepted for publication 11 October 1994)

We report a Monte Carlo study of hole transport in Al$_x$Ga$_{1-x}$As, In$_{1-x}$Al$_x$As, and GaAs$_x$Sb$_{1-x}$. The effects of alloy scattering are significant in all three cases, but mobilities are still high enough to be advantageous in particular device applications. We separately calculate the Hall r factors by a Boltzmann transport method and show that these factors are vitally important when attempting to compare Monte Carlo drift mobilities with experimental Hall data. © 1995 American Institute of Physics.

I. INTRODUCTION

While modeling of electron transport in III–V compounds and their alloys has been quite widespread in the last two decades, hole transport has received much less attention. However, interest in high-speed bipolar devices and complementary unipolar devices has prompted a recent increased interest in hole transport in these materials. Nevertheless, the general case is that Monte Carlo results are compared to experimental data in the form of Hall mobility while the simulation does not typically account for the Hall factor. While such practice is quite acceptable for the case of electron transport where this factor is typically close to unity, it is not acceptable for hole transport since this factor is on the order of 2 and its effect is often not negligible.

In this article, we simulate hole transport in Al$_x$Ga$_{1-x}$As, In$_{1-x}$Al$_x$As, and GaAs$_x$Sb$_{1-x}$ by using the Monte Carlo method and we determine the Hall mobility from the Hall factor which is calculated by solving the Boltzmann transport equation. This method is validated by comparing the resulting mobilities with measured Hall mobilities of Al$_x$Ga$_{1-x}$As over a range of compositions and the method is then applied to the other materials for which there are no data for comparison. This study illustrates the effects of the alloy scattering potential on the hole transport in various ternary semiconductors and the important role of the Hall r factor when comparing with experiment.

II. MONTE CARLO SIMULATION

The Monte Carlo simulation was performed using a single-particle approach assuming transport in both the heavy-hole and light-hole bands with scattering allowed between the bands. Both bands were assumed to be parabolic and symmetric, degenerate at $k = 0$. The material constants used for the compounds are given in Table I. In the case of alloys, parameters used were interpolated based upon the composition of the alloys following the method of Adachi.1

Using these parameters, the mobilities for Al$_x$Ga$_{1-x}$As, In$_{1-x}$Al$_x$As, and GaAs$_x$Sb$_{1-x}$ were calculated using an applied electric field value of 5 kV/cm (well within the linear region). For the calculation of alloy scattering rates, the expression of Look et al. was used.2 Since the alloy potential is largely an empirical parameter, the value of 0.53 eV, which was fitted to Al$_x$Ga$_{1-x}$As data,2 was used when appropriate and a range of values (from 0 eV to the difference in band gaps) was used for the other materials since there were insufficient data for fitting in these cases. Scattering rate expressions for the polar optical phonon, nonpolar optical phonon, and ionized impurity scattering mechanisms (a doping level of 1017 cm$^{-3}$ was assumed) were taken from Brudevoll et al.3 and the expressions for acoustic phonon scattering were taken from Costato and Reggiani4 using the equipartition approximation. The resulting drift mobilities are plotted in Figs. 1–3.

III. CALCULATION OF HALL r FACTOR

Calculation of hole scattering rates in semiconductors such as GaAs are very difficult because of the presence of two, coupled, degenerate hole bands. The Monte Carlo scheme accounts for this two-band nature in a straightforward manner but is slow to converge to an accurate solution. Further, the task of calculating a Hall mobility by Monte Carlo, instead of the usual drift mobility, is even worse because of the addition of a magnetic field requires many more scattering events to accurately characterize the effects which produce the Hall electric field. On the other hand, the Boltzmann transport equation, as solved by Rode's iterative method,2 can effectively produce highly accurate single-band values of both drift (or conductivity) and Hall mobilities, but is of uncertain accuracy for two-band Hall mobilities, at least in most present implementations. Unfortunately, most experimental mobilities are Hall mobilities, so to employ Monte Carlo it is at least necessary to know approximately how
TABLE I. Material parameters used for Monte Carlo Simulation.

<table>
<thead>
<tr>
<th>Material</th>
<th>GaAs</th>
<th>GaSb</th>
<th>InAs</th>
<th>AlAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{hh}/m_0</td>
<td>0.475a</td>
<td>0.330b</td>
<td>0.600f</td>
<td>0.760a</td>
</tr>
<tr>
<td>m_{lh}/m_0</td>
<td>0.087a</td>
<td>0.046a</td>
<td>0.027a</td>
<td>0.150a</td>
</tr>
<tr>
<td>ρ (g/cm3)</td>
<td>5.36f</td>
<td>5.61a</td>
<td>5.67a</td>
<td>3.76a</td>
</tr>
<tr>
<td>ω_c (rad/s)</td>
<td>5.30$\times10^{13}$</td>
<td>4.52$\times10^{13}$</td>
<td>4.58$\times10^{13}$</td>
<td>7.72$\times10^{13}$</td>
</tr>
<tr>
<td>ϵ_r</td>
<td>13.20a</td>
<td>15.69a</td>
<td>14.60c</td>
<td>10.06b</td>
</tr>
<tr>
<td>α (cm/s)</td>
<td>10.89f</td>
<td>14.44a</td>
<td>12.25a</td>
<td>8.16a</td>
</tr>
<tr>
<td>C_l (dyn/cm2)</td>
<td>4.73$\times10^5$</td>
<td>3.97$\times10^5$</td>
<td>4.45$\times10^5$</td>
<td>5.55$\times10^5$</td>
</tr>
<tr>
<td>C_h (dyn/cm2)</td>
<td>3.34$\times10^5$</td>
<td>2.77$\times10^5$</td>
<td>2.64$\times10^5$</td>
<td>3.95$\times10^5$</td>
</tr>
<tr>
<td>a (eV)</td>
<td>10.0e</td>
<td>2.21f</td>
<td>2.50e</td>
<td>15.0b</td>
</tr>
<tr>
<td>b (eV)</td>
<td>-1.70h</td>
<td>-3.30h</td>
<td>-1.80h</td>
<td>-1.60h</td>
</tr>
<tr>
<td>d (eV)</td>
<td>-4.40c</td>
<td>-8.35d</td>
<td>-3.60d</td>
<td>-3.40d</td>
</tr>
</tbody>
</table>

Drift mobilities and Hall mobilities compare in cases of interest, e.g., as a function of alloy scattering strength, which is the subject of this article.

The ratio of Hall mobility, μ_H, to drift mobility, μ, is known as the Hall r factor; i.e., $\mu_H = r \mu$. (Here we will assume that the drift and conductivity mobilities are equal.) If we consider the light and heavy hole bands individually, their separate Hall coefficients are given as $R_l = \epsilon_l \mu_{p_l}$ and $R_h = \epsilon_h \mu_{p_h}$, where ϵ_l and ϵ_h are the respective hole concentrations in the bands. The conductivity mobilities are $\sigma_r = \epsilon \mu_p$, where σ_r is an anisotropy factor, reported in Ref. 2, and ϵ is the average residence times of the holes in the Monte Carlo simulation. Interband scattering is explicitly accounted for, with the modification $k_f = k_i (m_f/m_i)^{1/2}$ instead of $k_f = k_i$ in deriving the usual scattering formulas, as in Ref. 5. (Here k_f and k_i are the wave vector magnitudes in the final and initial states, respectively.)

At this point, we treat the bands as independent entities to calculate an overall conductivity and Hall coefficient

$$\sigma = \sigma_l + \sigma_h = \epsilon (\mu_p + \mu_{p_h}) = ep\mu, \quad (1)$$

$$R = \frac{\sigma_l^2 R_l + \sigma_h^2 R_h}{(\sigma_l + \sigma_h)^2} = \frac{r}{\epsilon} \frac{\mu_p^2 + \mu_{p_h}^2}{\epsilon}, \quad (2)$$

where $p = \mu_p + \mu_{p_h}$. (The quantities μ_p and μ_{p_h} are found from the average residence times of the holes in the Monte Carlo simulation.) By definition, $\mu_H = R \sigma = r \mu$. Thus, within the confines of this approximate model, we can calculate r which should give us a means of comparing theoretical Monte Carlo results with experimental Hall data. Although...
the absolute values of \(r \) may not be extremely accurate, because they depend on the relative strengths of several different scattering mechanisms, the trend as we change only one scattering parameter (in this case, the alloy strength) should be more accurate, as can be inferred from other studies. The \(r \) factors for an alloy potential of approximately 0.5 eV are shown in Fig. 4 for each of the three alloys considered here. Because, as stated above, the absolute accuracy of the \(r \) factors is unknown, we have normalized the Monte Carlo mobilities of Figs. 1–3 to Hall mobilities (Figs. 5–7) by using a multiplicative factor \(r(x)/r(x=0) \). Also, experimental results for some available Al\(_x\)Ga\(_{1-x}\)As data of approximately the same doping are shown in Fig. 5 for a comparison of the "bowing" of the curves with \(x \), and the agreement is quite good.

IV. DISCUSSION

One of the prime conclusions of this study is that if Monte Carlo theoretical mobilities are compared with Hall experimental mobilities, the bowing with \(x \) will be stronger in the latter. The largest discrepancy will be for In\(_{1-x}\)Al\(_x\)As, then Al\(_x\)Ga\(_{1-x}\)As, and the smallest for GaAs\(_x\)Sb\(_{1-x}\). Stated in other terms, it may be said that the decrease in mobility suffered when going from a binary to a ternary is never as bad as it may appear from Hall results. This fact can be very important in cases for which the low-field mobility is a critical factor, as, for example, in a heterojunction bipolar transistor which must have the lowest possible base resistance.

Irrespective of the Hall \(r \) factor, theoretical Monte Carlo results themselves should be of great use in selecting or comparing materials for device applications. For example, the simulation of GaAs\(_x\)Sb\(_{1-x}\) shows that, for compositions near the lattice matching condition for InP (51% GaSb), the hole mobility is generally better than that of GaAs. This would
indicate that GaAs$_x$Sb$_{1-x}$ should be capable of producing superior p-channel transistors, as has been shown experimentally.6

Further, the simulation of In$_{1-x}$Al$_x$As shows that its transport properties are similar to those of Al$_x$Ga$_{1-x}$As. Although this seems to do little to recommend In$_{1-x}$Al$_x$As for device use, it should be noted that its high valence band-edge discontinuity with GaAs$_x$Sb$_{1-x}$ (Ref. 7) makes it very appealing for p-channel transistors.

In conclusion, the results given in this article should be useful in: (1) selecting new ternary materials on the basis of low-field mobility; (2) determining the effects of alloy scattering on the mobilities; and (3) estimating the true drift mobility from the experimental Hall mobility. Other ternary materials should be amenable to the same type of analysis presented here.

ACKNOWLEDGMENTS

The authors would like to thank C. E. Stutz, J. E. Ehret, and E. N. Taylor for crystal growth and T. A. Cooper for Hall measurements. D. C. L. was supported under USAF Contract No. F33615-91-C-1765.

1 S. Adachi, J. Appl. Phys. 58, R1 (1985).
11 Reference 3, and references cited therein.
13 J. Whitaker, Solid State Electron. 8, 649 (1965).
21 Reference 1, and references cited therein.
24 Reference 2, and references cited therein.