2008

Collaborative RO1 with NCBO Semantics and Services Enabled Problem Solving Environment For Trypanosoma Cruzi

Amit P. Sheth
Wright State University - Main Campus, amit.sheth@wright.edu

Rick Tarleton

Prashant Doshi

Mark Musen

Natasha Noy

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
Authors
Amit P. Sheth, Rick Tarleton, Prashant Doshi, Mark Musen, Natasha Noy, Satya S. Sahoo, and Daniel B. Weatherly
Driving Biological Problem

Trypanosoma Cruzi (*T. cruzi*):
T. cruzi is a protozoan parasite and a key causative agent of Chagas disease. Chagas affects 18 million people in Latin America leading to heart disease and sudden death.

Specific Objectives of Project

- **Development and Use of a Suite of Ontologies Using a Phased Approach**
 - Ontologies enable a semantic approach to information management and analysis. Phased approach promotes reuse of existing ontologies for developing new ones.
 - **Semantic Annotation of Experimental Data Using Multiple Ontologies**
 - Promotes integration of disparate data sources at multiple levels. Diverse ontologies will be aligned.
 - **Efficient Query Processing, Visualization and Extensibility**
 - Expressive querying on semantically annotated data using query builders and tools for intuitive visualization of results.
 - **Ontologies-driven PSE for *T. cruzi* hosted in BioPortal at NCBO**
 - Generic framework that can be specialized for other pathogens. *T. cruzi* data available from the University of Georgia.

Preliminary Work

T. cruzi Research:
Large amounts of experimental genomic and proteomic data on *T. cruzi* has been produced. For example, proteomic data includes:
- Whole proteome analysis of 4 life cycle stages (600 files)
- Proteomics of glycoproteins from 3 life cycle stages (27 files)
- Quantitative proteome analysis of plasma membrane proteins from 3 life cycle stages (48 files)
- Proteomics of RNA editing proteins from 2 life cycle stages (24 files)

These data are from over 700 individual experiments in eight separate proteome projects. These analyses resulted in the accumulation of greater than 1 million tandem mass spectra and 12,000 individual peptide identifications.

Semantic Bioinformatics for Glycoproteomics:
- **Ontology Development and Alignment**
 - In previous projects we have developed 3 deep domain ontologies – GlycO, PropreO and EnzyO. Participated in designing and developing tools for ontology engineering and alignment such as Protégé, PROMPT and OPTIMA.
 - **Scientific Data Annotation**
 - Identified genes for knockout in *T. cruzi*
 - Diagnostic techniques for identification of best antigens
 - Identify genes for knockin in *T. cruzi*

Questions related to these factors involve tedious sifting of vast amounts of information of different types (genomic, proteomic, publications). This problem is prevalent for other organisms as well.

Provisional Research

Problem Solving Environment for *T. cruzi*
- **Intuitive querying of multiple sets of heterogeneous databases**
 - Formulate scientific workflows to test hypotheses
 - Comply with usability issues to promote ease of use among biologists

- **Efficient Query Processing, Visualization and Extensibility**
 - Querying multiple sets of heterogeneous data with existing ontologies

- **Semantic Data Annotation**
 - Automatically aligning parts of different ontologies that target similar domains
 - Extend PROMPT and integrate OPTIMA

- **Automatic entity identification and disambiguation**
 - Extend Haley and investigate new approaches for composition

Evaluation

- **Validation**
 - Several example queries will be selected for validation
 - Correctness of the answers provided by the PSE to the queries will be rigorously tested

- **Usability and computation time will be qualitatively measured and compared with previous manually intensive approaches**

Exploration

- New metabolic pathways will be investigated and auxiliary questions will be answered
- PSE will facilitate the discovery of new potential therapeutic and immunological targets within the *T. cruzi* biology

Acknowledgment

This project is supported by grant RO1HL087795 from NHLBI. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH.