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MULTI-PEAK SOLUTIONS TO TWO TYPES OF FREE BOUNDARY 
PROBLEMS 

YI LI AND SHUANGJIE PENG 

Abstract. We consider the existence of multi-peak solutions to two types of free bound­
ary problems arising in confined plasma and steady vortex pair under conditions on the 
nonlinearity we believe to be almost optimal. Our results show that the “core” of the 
solution has multiple connected components, whose boundary called free boundary of the 
problems consists approximately of spheres which shrink to distinct single points as the 
parameter tends to zero. 

1. Introduction 

In this paper, we consider the following partial differential equation with Dirichlet bound­
ary condition { 

−ε2∆u = K(x)f(u − 1), u > 0, x ∈ Ω, 
(1.1) 

u = 0, x ∈ ∂Ω, 

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, ε ∈ R+ is a small 
parameter, f(t) is continuous in t and f(t) = 0 for t ≤ 0, K(x) is a positive function in 
Ω. For a positive solution uγ to (1.1), the boundary of the core Aγ := {uγ > 1} is the free 
boundary in this problem. 
Problem (1.1) is related to the following simple model describing the equilibrium of a 

plasma confined in a toroidal cavity (a “Tokomak machine”): 

∆v = λg(x, v) x ∈ Ω, 

v = c x ∈ ∂Ω, 
(1.2)∫ 

∂v 
ds = I, 

∂ν δΩ 

where ν is the outward unit normal to ∂Ω, g(x, t) = 0 for t ≥ 0, c is a constant which is 
unprescribed, and I is a given positive constant. For a detailed presentation of this model, 
the reader is referred to the Appendix in [33]. 
In (1.2), we can suppose that c > 0, since this is necessary for the existence of solutions to 

problem (1.2) for large λ (see [34]). Let v = c(1−u), we find that if v satisfies problem (1.2), 
then u solves    

−∆u = 
λ 
c 
g(x, −c(u − 1)), 

u = 0, 

u > 0, x ∈ Ω, 

x ∈ ∂Ω, 
(1.3) 
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and c satisfies ∫ ∫ ∫ 
∂v ∂u 

I = ds = −c ds = λ g(x, −c(u − 1)),
∂ν ∂ν δΩ δΩ Ω 

and I > 0 if g(x, t) > 0 for t < 0. Hence, we see problem (1.1) is of the form of problem (1.3) 
with ε2 = c/λ. 
Problem (1.2) was studied by many authors. One example is g(x, v) = K(x)v−, where 

v+ = max{v, 0}, v = v+ − v−. In [33, 34], the solutions were obtained by minimizing a 
certain variational problem. When N = 2 and N ≥ 3, and K(x) ≡ 1, for solutions obtained 
in [33, 34], Caffarelli and Friedman [8] and Shibata [31] investigated precise asymptotic 
location and shape of the free boundary as λ → +∞. Especially, they proved that for 
λ sufficiently large, the core is approximated by a ball with the center converging to a √ 
harmonic center and the radius being comparable to 1/ λ. In [12], Flucher and Wei 
considered problem (1.1) for the case K(x) ≡ 1, N ≥ 3, and f(t) = tp (1 < p < (N ++ 

2)/(N − 2)), and proved that for ε sufficient small, a mountain pass solution and its core 
have the similar asymptotic behaviors as those in [8]. Problem (1.1) was also studied by 
Shibata in the case N ≥ 3 and f(t) = tp (1 ≤ p < (N + 2)/(N − 2)) in [32], where Shibata + 

proved that the least energy solution concentrates at a global maximum of K(x) as ε → 0. 
We should also mention the interesting work [36] where Wei obtained multi-peak solutions 
to (1.1) by gluing localized solutions. More results can be found in [4, 22, 23] and the 
references therein. 

However, for the general nonlinearity f , it seems that there are very few results. More­
over, even for some special nonlinearity f(t) ( for example, f(t) = t+, or t

p ), the core of +

the solutions is simply connected. Recently, for the case K(x) ≡ 1, f(t) = t+ and N = 2, 
under the condition that the homology of Ω is nontrivial, Cao, Peng and Yan [9] proved 
by a constructive way that for any given integer k ≥ 1, there is ε0 > 0, such that for 
0 < ε < ε0 , (1.1) has a solution with core consisting of k components. It follows from [33], 
that the solution for problem (1.1) is unique in the case that f(t) = t+ and ε is large, so it 
is a natural problem whether or not problem (1.1) has multiple solutions for small ε. The 
main purpose of this paper is trying to find multiple solutions for much more general non­
linearities. More precisely, under some conditions on f(t), which we believe to be almost 
optimal, we prove that problem (1.1) has solutions which concentrate on distinct points in 
Ω as ε → 0, which implies that the core of the solutions has several connected components. 

We suppose that K(x) has k sets of local maxima in Ω including on the boundary ∂Ω, 
that is, 

(K1) there are M i ⊂ Ω (i = 1, · · · , k) satisfying 

K(x) = mi, ∀ x ∈ M i; 

(K2) there are bounded disjoint open sets Oi ⊂ Ω (i = 1, · · · , k) satisfying 

M i ⊂ O 
i 
, mi = sup K(x) > sup K(x). 

x∈Oi δOi\δΩ 

We also assume that f : R → R is Lipschtiz continuous and satisfies 
f (t)(f1) f(t) = 0 for t ≤ 0 and lim sup 
tl 

≤ 0, where l = (N + 2)/(N − 2). 
t→+∞ 



3 MULTI-PEAK SOLUTIONS TO FREE BOUNDARY PROBLEMS ∫ 
(f2) There exists ξ ≥ 0 such that F (ξ) > 0, where F (t) = t 

f(s)ds. Let ξ0 = inf{ξ ≥
0 

0 : F (ξ) > 0}. ∫ 
We define Hγ to be the complete of C∞(Ω) with respect to the norm ∥u∥γ = ( ε2|∇u|2)1/2 ,0 Ω 

and D1,2(RN ), Dγ 
1,2(RN ) the completes of C0 

∞(RN ) with respect to the norms ∥u∥D1,2(RN ) = ∫ ∫ 
( RN |∇u|2)1/2 and ∥u∥

�
1,2(RN ) = ( RN ε

2|∇u|2)1/2 respectively. D

Theorem 1.1. Suppose that (K1) − (K2) and (f1) − (f2) hold. Then there exists ε0 > 0, 
such that for ε ∈ (0, ε0), problem (1.1) has a positive solution uγ satisfying 

i ∈ Oi(i) uγ has k local maximum points xγ such that 

lim max dist(xγ
i , M i) = 0, 

γ→0 i=1,··· ,k 

and 
k∪1 

uγ(x) ≤ CεN−2 max 
|N−2 

, ∀ x ∈ Ω \ Bα(xγ
i ), 

i=1,··· ,k |x − xi γ i=1 

where δ > 0 is any fixed constant and C depends on δ. 
(ii) for any sequence {εn} ⊂ (0, ε0) with εn → 0, there exists a subsequence still denoted 

i i iby {εn}, such that for each i ∈ {1, · · · , k}, there is x ∈ M i with x → x and U i ∈γn 

D1,2(RN ), a least energy solution of 

−∆U = mif(U − 1), U > 0, U ∈ D1,2(RN ), (1.4) 

satisfying ∑ ik
x − x

uγn = U i( γn ) + ωγn , (1.5)
εni=1 

N/2
where ωγn ∈ D1,2(RN ), and ∥ωγn ∥ = o(εn ).γn D�

1 
n
,2(RN ) 

In this paper, we also consider the following problem { 
−ε2∆u = f(u − k(x)), x ∈ Ω, 

(1.6) 
u = 0, x ∈ ∂Ω. 

Problem (1.6) is a variant of the following free-boundary problem arising in steady vortex 
pairs: { 

λf(Ψ), x ∈ A, 
−∆Ψ = (1.7) 

0, x ∈ Ω \ A, 

Ψ|δA = 0, Ψ|δΩ = −k0(x) < 0, (1.8) 

where (Ψ, A) is a steady vortex pair: Ψ is a Stokes stream function, A ⊂ Ω ⊂ RN is an 
open set called the cross-section of a steady vortex ring and unknown a priori. k0(x) > 0 
is a continuous function defined on ∂Ω. For more detailed presentation of this model, we 
refer the readers to [17] and [28]. 
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Let φ be the solution of { 
∆k(x) = 0, x ∈ Ω, 

(1.9)
k(x) = k0(x), x ∈ ∂Ω. 

Then, k(x) > 0 achieves its maximum and minimum on Ω. 
Let u = Ψ+ k(x), A = {x ∈ Ω : u > k(x)} and ε2 = 1/λ, then problems (1.7) and (1.8) 

become (1.6). 
In this paper, we investigate problem (1.6) to obtain its solution pairs (uγ, Aγ) for ε 

sufficiently small, where the “vortex core” Aγ := {x ∈ Ω : uγ > k(x)}. 
There are many existence results for problem (1.6) under various assumptions. In [1, 2, 

27, 38], the solutions were obtained by using mountain pass lemma for various nonlinearities 
f(x, u) and any ε > 0. In [3, 6, 17, 28, 35], to find the solutions, the constrained variation 
methods were used, but the vorticity function f is unknown a priori. Moreover, in [6, 
17, 28], the solutions were obtained by regarding 1/ε2 as eigenvalue, so ε is not arbitrary. 
The asymptotic behavior of the solution pair (uγ, Aγ) of problem (1.6) was investigated in 
[6, 8, 12, 24, 38]. Recently, for the case f(t) = tp−1 and N ≥ 2, under the condition that + 

k(x) has l strictly local minimum points on the boundary ∂Ω, the authors [25] proved that 
for ε sufficiently small, (1.6) has a solution with “vortex core” consisting of l components 
by a constructive way. 

We also emphasize that almost all of the above papers imposed the Ambrosetti-Rabinowitz 
condition on the nonlinearity f(t) and most of the solutions mentioned here are in some 
sense the least energy solutions and the “vortex core” shrinks to a single point as ε → 0. 
In this paper, using the arguments in proving Theorem 1.1, we can find some high energy 
solutions whose “vortex core” consists of multiple connected components which shrink to 
distinct points in Ω as ε → 0 under the much more general conditions (f1) − (f2). 

Our following assumptions on k(x) cover the case that k(x) ∈ C1(Ω) is harmonic: 
(k1) there are M i ⊂ Ω (i = 1, · · · , k) satisfying 

k(x) = ai > 0, ∀ x ∈ M i; 

(k2) there are bounded disjoint open sets Oi ⊂ Ω (i = 1, · · · , k) satisfying 

M i ⊂ O 
i 
, ai = inf k(x) < inf k(x). 

x∈Oi δOi\δΩ 

Theorem 1.2. Suppose that k(x) > 0 in Ω, (k1) − (k2) and (f1) − (f2) hold and f(t) 
is strictly increasing in positive t. Then Theorem 1.1 is true to problem (1.6) with U i ∈ 
D1,2(RN ) being a least energy solution of 

−∆U = f(U − ai), U > 0, U ∈ D1,2(RN ). (1.10) 

By (5.1)-(5.3) in [5], we see (1.4) or (1.10) has a lease energy solution if (f1) − (f2) are 
satisfied, and also, similarly to [5], we can use Pohozaev’s identity to check that (f1) − (f2) 
are almost necessary for existence of a non-trivial solution of the associated problem (1.4). 
We point out here that in our theorems, if ∪ki M i ⊂ Ω, we do not require the Lipschitz 
continuity of f(t) since in this case we do not need to use the blow-up technique near the 
boundary in Proposition 3.3. Furthermore, if we assume the uniqueness of the least energy 
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solution of (1.4) or (1.10), it is not necessary to pass to subsequences in our theorems. At 
last, from the proof of Theorem 1.1, we see that Theorem 1.1 is still true for a unbounded 
domain Ω. 

By gluing localized solutions, we will search for a solution to (1.1) or (1.6) whose core 
consists of k disjoint connected components close to the corresponding M i, and the solution 
can be scaled into a least energy solution of (1.1) or (1.6) associated to the corresponding 
M i . Thus, on one side, we need to use the least energy solutions of (1.1) or (1.6) to con­
struct an approximate solution, which is an analogy of the Lyapounov-Schmidt reduction 
approach (see, for example, [13] ). On the other side, we apply the descent gradient flow in 
variational method to search for the critical point of the corresponding functional, which 
does not require any uniqueness result of the least energy solution nor isolatedness result 
of the least energy. We should point out that for gluing localized solutions, there have 
been many efforts starting from the pioneer works [10, 11, 15, 20, 30], for example, we can 
refer to [7, 29] and the references therein. 

We remark that differently from [7], we should overcome some additional difficulties. 
Firstly, we need to know the properties of the least energy solutions to the limit equations, 
including the mountain pass characterization of the least energy solutions and the property 
of decay of the least energy solutions at infinity. Secondly, since the least energy solutions 
of the limit equations decay algebraically, we can not modify the functional corresponding 
to (1.1) as in [7]. Instead, considering the fact that f(u − c) = 0 for u ≤ c, we modify 
the original equation by multiplying the nonlinearity f(t) by a characteristic function on 
a suitable set, which can force the concentration phenomena not to occur outside Oi (i = 
1, · · · , k). 
The paper is organized as follows: in Section 2, we will prove some properties of the 

least energy solutions to the limit problem related to problem (1.1) or (1.6). The proofs 
for the main results will be provided in Section 3. 

2. The limit problem 

In this section, we consider the limit problem ( )
−∆u = af (u − c) , u > 0, u ∈ D1,2 RN (2.1) 

where a, c are two positive constants, f(t) : R → R satisfies (f1) − (f2).∫ 
In order to make RN F (u − c) of class C1 and a meaningful functional for D1,2(RN ), we ( )

modify f(t) as in [5], that is, we modify f(t − c) by letting f̃(t − c) = f t ∧ (t0 + c) − c
if there exists t0 > ξ0 such that f(t0) ≤ 0. For simplicity, we again denote by f(t) the 
modified function. 

We recall that a solution w (x) of (2.1) is said to be a least energy solution, if 

RNIa,c (w) = ma,c := inf 
{
Ia,c (u) : u ∈ D1,2 

( ) 
\ {0} is a solution of (2.1)

} 
. (2.2) ( )

Here Ia,c : D1,2 RN → R is the functional corresponding to (2.1) ∫ ∫ 
1 

Ia,c (u) = |∇u|2 − aF (u − c) . 
2 RN RN 
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In the fundamental paper [5], by considering the minimization problem {∫ ∫ }
min |∇u|2 : aF (u − c) = 1 , 

RN RN 

( )
solution w (x) ∈ D1,2 RN satisfying w (x) > 0. Moreover, for any solution 
D1,2 

(
RN 

) 
of (2.1), the following Pohozaev identity holds: 

N − 2 
2 

∫ 

RN 

|∇u|2 = N 
∫ 

RN 

aF (u − c) . 

u (x) ∈ 

(2.3) 

Firstly, we have 

Berestycki and Lions proved that under conditions (f1) − (f2), (2.1) has a least energy 

Lemma 2.1. Ia,c (u) has a mountain pass geometry, that is, 

Ia,c (0) = 0. (2.4) 

There exist ρ0 > 0 and δ0 > 0 such that Ia,c(u) ≥ δ0 for all ∥u∥D1,2(RN ) = ρ0. (2.5) 

There exists u0 > 0 such that ∥u0∥D1,2(RN ) > ρ0 and Ia,c (u0) < 0. (2.6) 

Proof. (2.4) is trivial. 
By assumptions (f1) − (f2), there exists C > 0 such that 

N−2f (s − c) ≤ C|s| 
N +2 

for all s ∈ R. 

Thus, we have 

N−2F (s − c) ≤ C|s| 
2N 

for all s ∈ R. (
RN 

) 2N (
RN 

)
N−2It follows from the embedding D1,2 ω→ L ̸ , ∫ ∫ 

1 
N−2 

2 RN RN 

̸2N ( ) 

Ia,c (u) ≥ |∇u|2 − C |u| 
2N 

1 
N −2≥ ∥u∥2 − C ′ ∥u∥ , ∀u ∈ D1,2 RN .D1,2(RN ) D1,2(RN )2 

Therefore choosing ρ0 > 0 small, we find that (2.5) holds. 
Let w be a given least energy solution of (2.1). Define ( )x 

ut (x) = w (t > 0), 
t 

we see ∫ ∫ 
tN −2 

Ia,c (ut) = |∇w|2 − tN aF (w − c) . 
2 RN RN 

By the Pohozaev identity (2.3), we deduce that for sufficiently large L > 1, Ia,c (uL (x)) < 0. 
Hence uL (x) satisfies (2.6). 

D 
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From Lemma 2.1, we can define 

ba,c = inf max Ia,c (γ (t)) , (2.7)
/∈Γ t∈[0,1] 

where { ( ( )) }
Γ = γ (t) ∈ C [0, 1] , D1,2 RN : γ (0) = 0, Ia,c (γ (1)) < 0 , 

we have ba,c > 0. 
In the following, we will prove ba,c = ma,c by using the arguments in [21]. 

Lemma 2.2. There exists a path γ ∈ Γ satisfying 

w ∈ γ ([0, 1]) and max I (γ (t)) = ma,c, (2.8) 
t∈[0,1] 

where w (x) is a least energy solution of (2.1).
 

Proof. By Proposition 2.5, |w(x)| ≤ C/|x|N−2 for |x| large. Hence, we define
 { ( )
w x t > 0,

γ (t) (x) = t 
0 t = 0. 

It is easy to check that 

d d 
Ia,c (γ(t)) > 0 for t ∈ (0, 1) and Ia,c (γ(t)) < 0 for t > 1. 

dt dt ( )
Thus we can find a curve γ (t) : [0, L] → D1,2 RN such that 

γ (0) = 0, Ia,c (γ (L)) < 0, w ∈ γ ([0, L]) , max Ia,c (γ (t)) = ma,c. 
t∈[0,L] 

After a suitable scale change in t, we get the desired path γ ∈ Γ. D 

Define { ( ) ∫ ∫ }
N − 2 P = u ∈ D1,2 RN \ {0} : |∇u|2 − N aF (u − c) = 0 ,

2 RN RN 

then, we have 

Lemma 2.3. 
ma,c = inf Ia,c (u) , γ ([0, 1]) ∩ P ≠ ∅ for all γ ∈ Γ. 

u∈P 

Proof. Define { ( ) ∫ }
S = u ∈ D1,2 RN : aF (u − c) = 1 . 

RN 

Set ( ) √ 
x N − 2 

Φ (u) = u , tu = ∥u∥D1,2(RN ) . tu 2N 
then Φ : S → P is one-to-one, and ∫ 

1 N−2 NIa,c (Φ (u)) = tu ∥u∥D
2 

1,2(RN ) − tu aF (u − c)
2 RN 
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1 N − 2 2 

∥u∥N 

N 2N 
= D1,2(RN ) , ∀u ∈ S. 

Thus ( )N −2 

1 N − 2 
inf (u) = inf (Φ (u)) = inf 

2 

∥u∥NIa,c Ia,c D1,2(RN ) . u∈P u∈S u∈S N 2N 

Now, recalling the proof of Theorem 4 in [5], we know infu∈S ∥u∥D1,2(RN ) is achieved and 
Φ (u) is a corresponding least energy solution. Thus, ma,c = infu∈P Ia,c (u). 

For any γ (t) ∈ Γ, we see ∫ 
N − 2 ∥γ (0)∥2 − N aF (γ (0) − c) = 0,D1,2(RN )2 RN∫ 
N − 2 ∥γ (1)∥2 − ND1,2(RN ) aF (γ (1) − c) < 0. 

2 RN 

By (2.5), there exists t0 ∈ [0, 1] such that ∫ 
N − 2 ∥γ (t0)∥ > ρ0, ∥γ (t0)∥2 − N aF (γ (t0) − c) = 0. D1,2(RN ) D1,2(RN )2 RN 

So, γ ([0, 1]) ∩ P ̸ D= ∅. 

Now combining Lemma 2.2 and Lemma 2.3, we can easily obtain 

Proposition 2.4. ba,c = ma,c, ma1,c < ma2,c if a1 > a2; Moreover, if f(t) is strictly 
increasing in positive t, then ma,c1 < ma,c2 for c1 < c2. 

Proposition 2.5. Let Sa,c be the set of least energy solutions U of (2.1) satisfying U (0) = ( )
maxx∈RN U (x). Then Sa,c is compact in D1,2 RN . Moreover, there exists C > 0 indepen­
dent of U ∈ Sa,c, such that 

C 
U (x) ≤ for |x| large enough. 

|x|N−2 

Proof. From Pohozaev’s identity, we see {∥U∥D1,2(RN ) : U ∈ Sa,c} is bounded. Then, we see ( )
from elliptic estimate (see [19]) that Sa,c is bound in L∞ RN . Moreover, the maximum ( )
principle implies that Sa,c is bounded away from 0 in L∞ RN and ∥U∥L∞ > C for all 
U ∈ Sa,c. 

Now we claim that lim|x|→∞ U (x) = 0 uniformly for U ∈ Sa,c. To the contrary, we 
assume that for some {Uk}∞ ⊂ Sa,c and {xk}∞ ⊂ RN with limk→∞ |xk| = ∞, it holds k=1 k=1 
lim inf Uk (xk) > 0. 
k→∞ 

Define Vk (x) = Uk (x + xk). We see also from regularity theory of elliptic equations 
that for some β > 0, {Uk, Vk}∞ is bounded in C1,f 

(
RN 

)
. Then, taking a subsequence k=1 ( )

if necessary, we can assume that for some U, V ∈ D1,2 RN , Uk and Vk converge re­( ) ( )
spectively to U and V in C1 RN and weakly in D1,2 RN . Moreover max U ≥ cloc x∈RN 

and maxx∈RN V ≥ c. Indeed, if maxx∈RN U < c or maxx∈RN V < c, then by Pohozaev 
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identity, ∥Uk∥D1,2(RN ) = ∥Vk∥D1,2(RN ) = 0 and Uk = Vk = 0 which is a contradiction to 
lim inf Uk (xk) > 0. So U and V are nontrivial solutions of (2.1) and 
k→∞ 

Ia,c (U) , Ia,c (V ) ≥ Ia,c (W ) for any W ∈ Sa,c. 
Thus, for each 2R ≤ |xk|, ∫ ∫ ∫ 

1 1 1 
Ia,c (Uk) = |∇Uk|2 ≥ |∇Uk|2 + |∇Uk|2 

N N NRN BR(0) BR(xk)∫ ∫ 
1 1 

= |∇Uk|2 + |∇Vk|2 . 
N NBR(0) BR(0) 

Taking R > 0 large enough, we reach a contradiction. Thus, lim|x|→∞ U (x) = 0 uniformly 
for U ∈ Sa,c. 

Now choose R large and suitable C, we see 

C 
U(x) ≤ on ∂BR (0)|R|N−2 

U(x) < C in RN \BR (0) . 

So 

−∆U = −∆ 
C 

in RN \BR (0)|x|N−2 

and 
C 

U (x) ≤ or ∂BR (0) . |x|N−2 

By the comparison principle, we see that 

C 
U (x) ≤ ( if |x| > R) for any U ∈ Sa,c. (2.9)

|x|N−2 

At last, we prove that Sa,c is compact in D1,2(RN ). Let {Uk}∞ be a sequence in Sa,c.k=1 
Taking a subsequence if necessary, we can assume that Uk converges weakly to some U in( )
D1,2 RN . Note that U is solution of (2.1). It is standard to see that as k → ∞ ∫ ∫ 

¯af (Uk − c) Uk → af (U − c) U for R > R large. 
|x|≤R̄ |x|≤R̄

Since ∫ ∫ 
|∇Uk|2 − af (Uk − c) Uk = |∇U |2 − af (U − c) U = 0, 

RN RN 

it follows from (2.9) that ∫ ∫ 
lim |∇Uk|2 = |∇U |2 . 
k→∞ RN RN ( ) ( )

This implies that Uk → U ∈ Sa,c in D1,2 RN since Uk → U ∈ Sa,c weakly in D1,2 RN . 
As a result, we complete the proof. D 
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3. The proof of the main results 

In this section, we mainly prove Theorem 1.1 since the proof of Theorem 1.2 is similar. 
For simplicity, we use Sa to replace Sa,1. 

Define 
k k∪ ∪ 

M = M i , O = Oi 

i=1 i=1 

and for any set B ⊂ Ω, δ > 0, Bα = {x ∈ Ω : dist (x, B) ≤ δ}. For u ∈ Hγ, let ∫ ∫ 
ε2 

Iγ (u) = |∇u|2 − χO (x) K (x) f (u − 1) , (3.1)
2 { 

Ω Ω 

1 x ∈ O 
where χO (x) = 

0 x ∈ Ω \ O.
 
We also define
 ∫ ∫ 

ε2 

I i γ (u) = |∇u|2 − χOi (x) K (x) f (u − 1) . (3.2)
2 Ω Ω 

It is easy to check that the functionals Iγ (u) and Iγ
i are in C1 (Hγ) if we modify f(t) as 

in [5]. 
Let { }

1 
δ = min dist (M, Ω \ O) , min dist (Oi, Oj) . 

=j10 i̸( )
We fix β ∈ (0, δ) and a cutoff ϕ ∈ C0 

∞ RN such that 0 ≤ ϕ ≤ 1, ϕ (x) = 1 for |x| ≤ β 

and ϕ (x) = 0 for |x| > 2β. For each yi ∈ (M i)
f 
and U i ∈ Smi , we define 

k ( )∑ x − yi
Uyi,··· ,yk 
γ = ϕ (x − yi) U

i . (3.3)
ε 

i=1 

We will find a solution near the set { ( )f 
}

Uyi,··· ,ykXγ = γ (x) : yi ∈ M i , U i ∈ Smi for each i = 1, · · · , k . (3.4) 

For each i ∈ {1, · · · , k} and yi ∈ M i , U i ∈ Smi fixed, set Wγ
i (x) = ϕ (x − yi) U i 

(
x−yi 

)
γ 

|yi,� −yi|if yi ∈ Ω. If yi ∈ ∂Ω, choose yi,γ ∈ Ω such that |yi,γ − yi| = dist{yi,γ, ∂Ω}, γ| ln γ| → ( ) ( )x−yi,� x−yi,�c ≤ 2β, (c > 0) as ε → 0, and set Wγ
i (x) = ϕ U i . Accordingly, define

γ| ln γ| γ( ) ( ) ( )
x−yi x−yi,� x−yi,�W i or W i U i .γ,t (x) = ϕ (x − yi) U i 
γt γ,t (x) = ϕ

γt We see by Proposition 2.5   γ| ln γ|
that lim  W i  = 0. Moreover, we have γ,t γt→0 ( ) 

(
tN−2 ∫   ∫ ( )) ( ) 2 NW i = εN  ∇U i − t K(yi)F U i − 1 + o εN .Iγ γ,t 2 RN RN ( )

W i < −2εNThus, there exists Ti > 0 such that Iγ(Wγ,t
i ) = Iγ

i 
γ,t for t ≥ Ti. 
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Let γγ
i (t) = W i γ (0) = 0. For s = (s1, · · · , sk) ∈ T = [0, T1] × · · · × γ,t (x) for t > 0 and γi 

[0, Tk], we define 
k∑ 
γiγγ (s) = γ (si) , Dγ = max Iγ (γγ (s)) . (3.5) 

s∈T 
i=1 ∑kFor each c > 0, define Ec = bc,1 and E = i=1 Emi . 

Proposition 3.1. We have 

(i) Dγ − EεN = o(εN ) as ε → 0. 
(ii) lim sup max ε−N Iγ (γγ (s)) ≤ Ẽ := max {E − Emi |i = 1, . . . , k} < E. 

s∈δT γ→0 

(iii) for each d > 0, there exists α > 0 such that for sufficiently small ε > 0, Iγ (γγ (s)) ≥ 
N Nd dγ γ2 2 N 

is the d 
2

Dγ − αεN implies that γγ (s) ∈ X 2 2, where X
 ε
 neighborhood of the
 2γ γ 

set Xγ defined in (3.4). ∑kProof. Since supp γγ (s) ⊂ M2f for each s ∈ T , we see Iγ (γγ (s)) = I i (γi (si)). Now, i=1 γ γ 
by Proposition 2.5, we find ∫ ∫ 

= εN N−2 ∇U i εNε2 |∇γγ (si)|2 s 
2 
+ o 

( )
i 

Ω RN∫ ∫ ( )
N U i − 1χOi K(x)f (γγ (si) − 1) = εN si K (yi) f + o(εN ). 

Ω RN 

So, from the Pohozaev identity, we see that 
N−2( ) (
s N − 2 

)∫ 
2 ( )

γi (si) = εN i − s N ∇U i + o εN .Iγ γ i2 2N RN ( ) ∫ 
tN−2 2− N−2 tNAlso max |∇U i| = Emi . Hence, (i) and (ii) can be proved easily. 
2 2N RN 

t∈(0,∞)
 

− N−2
Denote g (t) = t
N

2 

−2 

2N t
N , then   > 0 t ∈ (0, 1) 

g ′ (t) = 0 t = 1  < 0 t > 1 

and g ′′ (1) = 2 − N < 0. Hence, (iii) is obvious. D 

Now define { }
Ψi
γ = ψ ∈ C ([0, Ti] , Hγ) : ψ (si) = γγ

i (si) for si = 0 or si = Ti (3.6) 

and 
Ci I i γ = inf max γ (ψ (si)) . (3.7) 

β∈Ψi si∈[0,Ti] 

ε−N CiProposition 3.2. For i = 1, . . . , k, lim .γ = Emi
γ→0 
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Proof. We prove 

ε−N Ci ε−N Cilim inf γ ≥ Emi and lim sup γ ≤ Emi . 
γ→0 γ→0
 

Let ψ (si) = γγ
i (si) , si ∈ [0, Ti], then we can see
 

ε−N Ci
lim sup γ ≤ Emi . 
γ→0 

For any ψ ∈ Ψi
γ, let ψ̃ (si) (x) = ψ(si) (εx + yi) for yi ∈ Ω, ψ̃ (si) (x) = ψ(si) (εx + yi,γ) 

for yi ∈ ∂Ω, then we see (
1 
∫ 

2 
∫ ( )) ( )

Iγ
i (ψ) = εN ∇ψ̃ (si) − K (yi) F ψ̃ (si) − 1 + o εN 

2 RN RN ( )
and ψ̃ (si) satisfies ψ̃ (0) = 0 and Imi,1 ψ̃ (Ti) ≤ −2. 

So ( ∫ ∫ ( ))2 
max 

1 ∇ψ̃ (si) − K (yi) F ψ̃ (si) − 1 ≥ Emi . 
si∈[0,Ti] 2 RN RN
 

ε−N Ci
Hence lim inf . Dγ ≥ Emi
γ→0 

N( ) dγ 2 

Proposition 3.3. Let (εj ) be such that limj→∞ εj = 0 and uγj ⊂ Xγj
j such that ( ) − N ( )

ε−N ′ lim ≤ E and lim ε 2 I = 0 in (Hγ) 
∗ . (3.8)

j→∞ j Iγj uγj j γj 
uγj { }

Then, for any fixed d > 0 (sufficiently small), there exists, up to a subsequence, zj
i ⊂ 

Ω, i = 1, . . . , k, yi ∈ M i , U i ∈ Smi , such that ∑k ( ) (
x − zi 

) ( N )
i i i U i j 2lim z − y = 0, uγj − ϕ x − z = o ε . (3.9)j j j

j→∞ εji=1 γ 

Before we prove Proposition 3.3, we give a preliminary lemma. 

Lemma 3.4. Let v ∈ D1,2(RN ) ∩ C(RN ) satisfy the equation 

−∆v = χ{x1>0}f(v − 1), x ∈ RN . 

Then v ≤ 1 for x1 < 0, so that v actually solves 

−∆v = f(v − 1), x ∈ RN . 

Proof. Standard regularity arguments yield v ∈ C1(RN ) and ∇v → 0 as |x| → +∞. Using 
δv 
δx1 

as a test function, we see ∫ ∫ +∞ ∫ 
∂ 

dx ′ |∇v|2dx1 − F (v(0, x ′ ) − 1)dx ′ = 0. 
RN −1 −∞ ∂x1 RN−1 

Noting that the first integral is zero, we obtain v(0, x ′ ) ≤ 1. Now, to prove that v ≤ 1 
for x1 < 0, we just use (v − 1)+χ{x1<0} ∈ D1,2(RN ) as a test function, and obtain that 
(v − 1)+χ{x1<0} ≡ 0. As a result, we complete the proof. D 
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Proof of Proposition 3.3. For simplicity, we write ε for εj . By compactness of Smi and Mf , 
there exist Vi ∈ Smi , zj

i ∈ (M i)
f 
and yi ∈ (M i)

f 
for i = 1, . . . , k, such that, passing to a 

subsequence still denoted by (uγ) 
k ( )∑ ( ) x − zi 

i i i j N 
2zj → y , uγ − ϕ x − zj Vi ≤ 2dε (3.10)

ε 
i=1 γ 

for ε > 0 small enough. 
We set 

k∑ ( )
1 i 2 1 u = ϕ x − z uγ, u = uγ − uγ j γ γ. 

i=1 

Now we prove ( ) ( ) ( )
1 2 εNIγ (uγ) ≥ Iγ uγ + Iγ uγ + o . (3.11) ∪kSuppose there exists yγ ∈ A = i=1 (B (yi , 2β) \B (yi, β)) such that uγ (yγ) > c for some 

c > 0. Let vγ (x) = uγ (εx + yγ) and Ωγ = {x ∈ RN : εx + yγ ∈ Ω}. 
¯Taking a subsequence, we can assume that yγ → y0 ∈ A. Since (3.10) holds, (vγ) is 

¯bounded in D1,2 (Ωγ), using the blow-up argument (see [18]), we deduce that vγ (x) → U( )
RN ¯ ¯weakly in D1,2 for some U ∈ D1,2 (Ω∞). Moreover, U satisfies ( )

¯ ¯−∆Ū = K (y0) f U − 1 in Ω∞, U (0) ≥ c, (3.12) 

RN ¯where Ω∞ = or Ω∞ = RN . If Ω∞ = RN , by Theorem 1.1 in [16], U = 0, which is + + 

RN ¯impossible. So, in (3.12), Ω∞ = . We claim max U > 1, indeed, if Ū ≤ 1, then (3.12) 
x∈RN 

implies 
−∆Ū = 0 in RN ( )

¯and hence Ū = 0, which is a contradiction with U (0) ≥ c. Hence, by definition, IK(y0),1 U ≥ 
EK(y0). Also, for suitable large R > 0 ∫ ∫ 

εN 

lim inf ε2 |∇uγ|2 ≥ ∇Ū 2 
. (3.13)

γ→0 2B(y ,R) RN 

It follows from Proposition 2.4 that EK(y0) ≥ min{E1, · · · , Ek}. Thus from Pohozaev 
identity and (3.13), we get that ∫ 

¯lim inf ε2 |∇uγ|2 ≥ 
εN N

IK(y0),1 

(
U
) 
≥ 
εN N 

min{E1, · · · , Ek} > 0, 
γ→0 2 2B(y ,R) 

which contradicts (3.10), provided d > 0 is small enough. 
Hence, ∥uγ∥L∞(A) → 0, and ∫ 

ε−N K (x) F (uγ − 1) → 0. 
A 

As a consequence, ∫ [ ( ) ( )]
ε−Nlim χOK (x) F (uγ − 1) − F uγ 

1 − 1 − F uγ 
2 − 1 = 0. 

γ→0 Ω 
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At this point, write ∫ 
Iγ (uγ) =Iγ 

(
u 1
) 
+ Iγ 

(
u 2
) 
+ ε2ϕ (1 − ϕ) |∇uγ|2 

γ γ∫ Ω [ ( ) ( )]
− χOK (x)	 F (uγ − 1) − F u 1 

γ − 1 − F u 2 
γ − 1 + o(εN ). 

Ω 

As a result, (3.11) is true. 
As the second step, we estimate Iγ (u

2 
γ). We will use the blow up technique (see [18]) to 

prove Iγ (uγ
2) ≥ 0. 

N 
Since {uγ} is bounded, we see from (3.10) that ∥u2∥ ≤ 4dε 2 for small ε > 0.γ ∪k 

γ γ 

Suppose there exist yγ ∈ Ω\ i=1 B(yi , 2β) such that uγ 
2 (yγ) > c for some c > 0. Let 

2 
∪k ivγ (x) = u (εx + yγ). Taking a subsequence, we can assume that yγ → y0 ∈ Ω̄\ B(y , 2β).γ i=1 

For the location of y0 we have 

(1) y0 ∈ Ω̄\ Ō, 
|y −y0|(2) y0 ∈ ∂O \ ∂Ω, 

γ ≤ δ, 
|y −y0|(3)	 y0 ∈ ∂O \ ∂Ω, 

γ → ∞ as ε → 0,
 
¯
(4) y0 ∈ ∂Ω ∩ O, |y −

γ
y0| → δ as ε → 0,
 

¯
(5) y0 ∈ ∂Ω ∩ O, |y −y0| → ∞ as ε → 0,∪k
γ 

(6) y0 ∈ O\ i=1 B(yi , 2β). 

Using the blow-up argument, we find that vγ (x) → U weakly in D1,2 (Ω∞) for some 
Ω∞ ⊂ RN , and U solves some limit problem. 

In case (1), U solves 

−∆U = 0, Ω∞ = RN 
+ .or RN 

Hence, U = 0 which is impossible since U (0) > c. 
In case (2), U satisfies 

−∆U = χ{x1≥0}K (y0) f (U − 1) , Ω∞ = RN .	 (3.14) 

By Lemma 3.4, (3.14) is indeed 

−∆U = K (y0) f (U − 1) in RN .	 (3.15) 

In case (4), U	 solves 

RN−∆U = K (y0) f (U − 1) , in + . 

By Theorem 1.1 in [16], U ≡ 0, which is impossible. 
In cases (3), (5) and (6), U satisfies 

−∆U = K (y0) f (U − 1) in RN . 

Summarizing the above analysis, we see U is a solution of 

−∆U = K (y0) f (U − 1) in RN . 
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Hence, similarly as the proof of (3.11), we see 

εN N ∥u 2∥2 ≥ min{E1, · · · , Ek} > 0,γ γ 2 
2which contradicts the fact ∥uγ2∥γ ≤ 4dε 
N 

for d small enough. Hence ∥uγ2∥L∞(Ω) → 0 and 
for ε sufficiently small ∫ ∫ ∫( ) ε2 ( ) ε2 

2 2 2 2Iγ u = ∇u 
2 − χOK (x) F u − 1 = ∇u 

2 ≥ 0.γ γ γ γ2 2Ω Ω Ω 

Now for i = 1, . . . , k, we define 
1,i 1 1,iuγ (x) = uγ (x) for x ∈ Oi , uγ (x) = 0 for x ∈ RN \ Oi . (3.16) 

Set ( )
W i 1,i i(x) = u (x) εx + z .γ γ j 

We fix an arbitrary i ∈ {1, . . . , k}. Arguing as before, taking a subsequence, we assume ( ) ( )
that Wγ

i → U i weakly in D1,2 RN for some U i ∈ D1,2 RN . Moreover U i solves ( ) ( )
−∆U i i x ∈ RN = K y f U i − 1 , . 

From the maximum principle, we see that U i is positive and max U i > 1. Now ( ) x∈RN 

we prove that Wγ
i → U i strongly in D1,2 RN . Suppose that there exists a sequence 

i 1,i{zγ} ⊂ B (y , 2β) satisfying u (zγ) > c for some c > 0 and γ γ 

zγ − zi 
lim inf j 

= ∞. (3.17)
γ→∞ ε 

¯ W̃ iProceeding as before, we may assume that zγ → z0 ∈ O as ε → 0. Then (x) = ( ) γ 

u1γ
,i (εx + zγ) converges weakly to Ũ i ∈ D1,2 RN satisfying ( )

−∆Ũ i = K (z0) f Ũ i − 1 , x ∈ RN , 

and as before we get a contradiction. Hence, using (f1) (f2) and Lemma 1.1 in [26], ∫ ∫( ) ( ) ( ) ( )
i W i i U i − 1lim χOi K εx + z F γ − 1 = K y F . (3.18)j

γ→0 Ω RN ( )
Now, it follows from the weak convergence of Wγ

i to U i in D1,2 RN that ( ) 
( ∫ ∫ ( ) ( ))

1,i ilim sup ε−N Iγ u ≥ lim inf 
1 ∇W i 

2 − K εx + y χOi F W i − 1γ γ γ
γ→0 2γ→0 RN RN ∫ ∫ 

1 2 ( ) ( )
∇U i i≥ − K y F U i − 1 (3.19)

2 RN RN 

≥ Emi . 

Combining the fact limγ→0 ε
−N Iγ (uγ) ≤ E and (3.11), we derive ( )( ) k ( ) ( ( ) ( ))∑ 

ε−N 2 1,i ε−N 2 1lim sup Iγ u + Iγ u = lim sup Iγ u + Iγ uγ γ γ γ
γ→0 γ→0

i=1 
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≤ lim sup ε−N Iγ (uγ) ≤ E (3.20) 
γ→0 

k∑ 
= Emi . 

i=1 

Noting Iγ (uγ
2) ≥ 0, we see from (3.19) and (3.20) ( ) ( ) 11,i ε−N 2 2lim Iγ uγ = Emi , Iγ uγ = uγ γ 

2 
= o(εN ). (3.21)

γ→0 2 
So (3.19) and (3.21) imply ∫ ∫( ) 1 ( ) ( )

iIK(yi),1 U
i = ∇U i 2 − K y F U i − 1 = Emi . 2 RN RN 

i V i (x − zi)It follows from Proposition 2.4 that y ∈ M i, and as a consequence, U i (x) = 
with V i ∈ Smi and zi ∈ RN . 

Now using (3.18), (3.19), (3.21), we have∫ ∫ ∫ 
2 2 2∇U i ≥ ∇Wγ

i + o (1) ≥ ∇U i + o (1) . 
RN RN RN 

This proves ∥W i − U i∥D1,2(RN ) = o (1). In particular, we have γ (
x − zi 

) 2 ( )
1,i j 

εN uγ − U i = o . 
ε 1,2D (RN ) ( )

Now using the fact ∥uγ2∥γ 
2 
= o εN , we complete the proof. D 

Proposition 3.5. For d > 0 sufficiently small, there exist constants b > 0 and ε0 > 0, 
such that ( )

γ γ 

NN d γN′ 2 
for u ∈ ID Xdγ 2 2∥Iγ (u)∥ ≥ bε ∩
 \X
 and ε ∈ (0, ε0) ,2 γ 

where ID =: {u ∈ Hγ : Iγ(u) ≤ Dγ}.γ 

Proof. To the contrary, we suppose that for small d > 0, there exist (εj ) with εj → 
N N( )

uγj (
ε−N Iγj uγj 

d2 2dγ γ 
with uγj ∈ Xγj

j \X j20 (j → +∞) and a sequence
 

lim
 
j→∞ j 

satisfying
γj )
 ( )
uγj
 

i ∈ M i
 

ε
 2
− N 

j 
′ ≤ E and lim
 

j→0 
I
 = 0.
 γj {


¯
i ,
 U i ∈ Smi
⊂
By Proposition 3.3, there exists
 

} 
O, i = 1, . . . , k, y

lim zj
i − y i = 0, 

γj →0 

such that
 z
j 

k ( ) 2∑ ( ) x − zi ( )
i U i j 

εN− ϕ x − z = o ,uγj j jεji=1 γj 

N 
d γ 2 

j . So we complete the proof. D2
γjwhich is a contradiction with the fact uγj ̸∈ X 
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Proposition 3.6. For sufficiently small fixed ε > 0, Iγ has a Palais-Smale sequence in 
N 

Xdγ 
γ ∩ ID 

γ . ( )

Proof. By Proposition 3.1 (iii), there exist α ∈ 0, E − Ẽ such that for sufficiently small
 
ε > 0,
 

Nd γ 2 
Iγ (γγ (s)) ≥ Dγ − αεN ⇒ γγ (s) ∈ X 2

γ . 

If Proposition 3.6 does not hold for small ε > 0, there exists a (ε) > 0 such that
 
2 
N 

γ 
′ (u)∥ ≥ a (ε) on Xγ

dγ ∩ Iγ
D∥I
 . Also, we know from Proposition 3.5 that
 

,
 ∀ u ∈ Iγ
D ∩
 

(


Xdγ 
γ 

)
 

,
 
NN d γN 2′ 2∥Iγ (u)∥ > bε \Xγ2

where b is independent of ε.
 
2 
N 

Now there exists a pseudo-gradient vector field Pγ on a neighborhood Zγ of Xγ
dγ ∩ Iγ

D 

for Iγ (see [37]). Let ηγ be a Lipschitz continuous function on Hγ such that 0 ≤ ηγ ≤ 1, 
2 
N 

ηγ ≡ 1 on Xγ
dγ ∩ Iγ

D and ηγ ≡ 0 on Hγ\Zγ. 
Let ξγ be also a Lipschitz continuous on R such that 0 ≤ ξγ ≤ 1, ξγ (t) ≡ 0 if |t − Dγ| ≥ 

αεN , and ξγ (t) ≡ 1 if |t − Dγ| ≤ aεN . Then, there exists a global solution Φγ : Hγ×R → Hγ2 
of the initial value problem 

∂ 
Φγ (u, t) = −ηγ (Φγ (u, t)) ξγ (Iγ(Φγ(u, t)))

∂t 
Φγ (u, 0) = u. 

Now, we can choose τγ > 0 large, such that for some µ ∈ (0, α), 

Iγ (Φγ (γγ (s) , τγ)) ≤ Dγ − µεN , s ∈ T . (3.22) 

Let γ (s) = Φγ (γγ (s) , τγ). We also have 

γ (s) = γγ (s) for γγ (s) ∈ Iγ
D −aγN 

. (3.23) ( )
Let ϕ ∈ C0 

∞ RN satisfy that ϕ (x) = 1 for x ∈ Oα , ϕ (x) = 0 for x ̸∈ O2α , ϕ (x) ∈ [0, 1], 
and |∇ϕ| ≤ 2 . Define γ1 (s) = ϕγ (s) and γ2 (s) = (1 − ϕ) γ (s). By the definition of Iγ, we α 
see 

For i = 1, , k, set γ1,i (s) (x) = γ1 (s) (x) for x ∈ (Oi) , γ1.i (s) (x) = 0 for x ̸∈ (Oi)

Iγ (γ (s)) = Iγ (γ
1 (s)) + 

ε2 

2 

∫ 

Ω 
∇γ2 (s) 

2 
+ ε2ϕ (1 − ϕ) |∇γ (s)|2 
∫ 

Ω (3.24) 

≥ Iγ (γ
1 (s)) . 

α α · · · , 
we see ∑ ∑( ) k ( ) k ( )

γ1,i (s) I i γ1,i (s)Iγ γ
1 (s) = Iγ = γ . (3.25) 

i=1 i=1 

2 



�

�

�

�

18 YI LI AND SHUANGJIE PENG 

By Proposition 3.1 Iγ (γγ (s)) ≤ εN Ẽ+o(εN ) < Dγ−αεN , s ∈ ∂T , so γγ (s) ∈ Iγ
D −aγN ∀s ∈ 

∂T . Using (3.23) we see γ (s) = γγ (s) on ∂T and hence γ1,i (s) ∈ Ψi
γ for i = 1, . . . , k. 

Therefore, by Proposition 3.2, (3.24) and (3.25), we see 

k∑ 
max Iγ (γ (s)) ≥ Emi ε

N + o(εN ) = Dγ + o(εN ), 
s∈T 

i=1 

which contradicts (3.22) if ε is sufficiently small. So we complete the proof. D 

Proof of Theorem 1.1. By Proposition 3.6, for a fixed small ε, we obtain a Palais-Smale 

}∞ 
n=1 in Xdγ 

γ 
2 
N 

∩IγD , so it follows from Proposition 3.3 that {un
→ uγ weakly in Hγ, then uγ is a critical point of Iγ.

}∞ 
n=1 
Now we prove 

is bounded
 sequence {un
in Hγ. Suppose that un 

N N 
uγ ∈ Xdγ 

γ 
2 ∩ ID . Write un ∥ ≤ dεγ = vn + wn, vn ∈ Xγ, ∥wn γ Since Xγ is compact, there 2 .
 

exists vγ ∈ Xγ such that vn → vγ in Xγ up to a subsequence, as n → ∞. Now suppose 
wn → wγ weakly in Hγ, then uγ = wγ + vγ and 

2
N 

∥uγ − vγ∥ = ∥wγ∥ ≤ lim inf ∥wn∥ ≤ dεγ γ γ .
 
n→∞ 

2 
N 

Hence uγ ∈ Xγ
dγ .
 

To show uγ ∈ Iγ
D , it suffices to prove 

lim inf Iγ (un) ≥ Iγ (uγ) . (3.26) 
n→∞ 

2 
N 

Let qn = un − uγ. Since un and uγ are in Xγ
dγ , we see by triangular inequality that
 

∥qn∥γ ≤ 2dε 2
N 
+ on(1). (3.27) 

It follows from un → uγ weakly in Hγ that 

∥qn∥2 = ∥un∥2 − ∥uγ∥2 + on(1). (3.28)γ γ γ 

On the other hand, it follows from (f1) that ∫ ∫ 
F (un − c) = F (uγ − c) + on (1) , (3.29) 

Ω Ω 

which implies (3.26) immediately. 
Now uγ is a critical point of Iγ (u), and uγ solves 

−ε2∆uγ = χOK (x) f (uγ − 1) in Ω. 

By Proposition 3.3, we see ∫ 
εNε2 |∇uγ|2 ≤ o 
( ) 

. 
Ω\Mo 

Performing Moser iteration scheme, we deduce 

∥uγ∥ = o(1), as ε → 0+ .L∞(Ω\Mo ) 
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So, for ε sufficiently small, uγ is indeed a solution of 

−ε2∆u = K (x) f (u − 1) in Ω. 

Let xγ
i be a maximum point of uγ in Oi . Set vγ = uγ(xγ

i + εx), then from the proof of 
Proposition 3.3, we see, after passing a subsequence, xiγ → xi ∈ M i and that vγ converges 
in the C2 sense over compact sets to a positive solution U i ∈ D1,2(RN ) of equation (1.4). 
Moreover, using the arguments to prove Theorem 0.1 in [14], we deduce that xiγ is the 
unique local maximum point of uγ in Oi . Choose Ri such that 

vγ(x) ≤ c ≤ 2U i(x), if |x| = Ri, 

which implies that 
x − xγ

i 
i uγ(x) ≤ c ≤ 2U i( ), ∀ x ∈ ∂BγRi (xγ)ε 

and 
k k∑ i ∪x − x 2−N 
U i( γ i i uγ(x) ≤ c ≤ 2 ) ≤ CεN−2 max x − xγ , ∀ x ∈ ∂BγRi (xγ),ε i=1,...,k 

i=1 i=1 

for some C > 0 independent of U i and ε. 
On the other hand, from the proof of Proposition 3.3, we see 

k∪ 
uγ(x) ≤ c, ∀ x ∈ Ω \ BγRi (x iγ), 

i=1 

which implies that 
k∪ 

−ε2∆uγ(x) = 0, ∀ x ∈ Ω \ BγRi (x iγ). 
i=1 

Using the comparison principle, we see that 

k∪ 
uγ(x) ≤ CεN−2 max x − x iγ 

2−N 
, ∀ x ∈ Ω \ BγRi (x iγ). 

i=1,...,k 
i=1 

As a consequence, 

k∪ 
uγ (x) ≤ CεN−2 max x − xγ

i 2−N 
, ∀ x ∈ Ω \ Bα(xγ

i ). 
i=1,...,k 

i=1 

At last, noting (3.9) and the fact 

i i(
x − z

) ( ) (
x − z

) 2 ( )j i j
U i − ϕ x − zj U

i = o εN ,
ε ε γ 

we can derive part (ii) of Theorem 1.1 directly. 
D 
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Proof of Theorem 1.2. Since we have Propositions 2.4 and 2.5, we can prove Theorem 
1.2 with the same arguments as Theorem 1.1. 

D 
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