Fall 2012

CS 1200: Introduction to Discrete Structures

Pascal Hitzler

Wright State University - Main Campus, pascal.hitzler@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation

This Syllabus is brought to you for free and open access by the College of Engineering and Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
I. College/School/Department – Teacher
 College of Engineering and Computer Science
 Department of Computer Science and Engineering
 Prof. Pascal Hitzler, 389 Joshi
 pascal@pascal-hitzler.de; office hours: Tuesdays 4pm to 5pm

II. Course Information
 Course Title: Introduction to Discrete Structures
 Course Abbreviation and Number: CS1200
 Course Cross Listing(s) Abbreviation and Number:
 Check ("x") all applicable:
 General Education Course_____ Writing Intensive Course_____ Service Learning Course_____ Laboratory Course__x__ Ohio TAG (Transfer Assurance Guide) Course ______ Ohio Transfer Module Course______ Others (specify)_____

III. Course Registration
 Prerequisites: MPL 3
 Corequisites: none
 Restrictions: none
 Other: none

IV. Learning Outcomes
 • Basic understanding of discrete structures as relevant for computer science
 • Working knowledge of basic mathematical notation and manipulation with discrete structures

V. Course Materials
 Required: none

VI. Method of Instruction: Lecture + Recitations

VII. Evaluation and Policy
 Weekly homework: 50% score required to qualify for participation in final exam.
 Two exams during term (30% each), final exam (40%) towards class grade.

VIII. Grading Policy
 Grading will follow a standard scale (A: 100-90, B: 89-80, C: 79-70, D: 69-60, F: 59-0)

IX. Course Outline
 1 The Language of Sets and Relations
 2 Logical Connectives
 3 Sets
 4 Functions
 5 Relations
 6 Natural Induction

X. Further Particulars
 Physical presence required in class and recitation sessions.