Spring 2005

CS 840: Advanced Topics in the Theory of Computation

Thomas Sudkamp
Wright State University - Main Campus, thomas.sudkamp@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the [Computer Engineering Commons](https://corescholar.libraries.wright.edu/collections/computer_engineering_commons), and the [Computer Sciences Commons](https://corescholar.libraries.wright.edu/collections/computer_sciences_commons)

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/326

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
CS 840: Advanced Topics in the Theory of Computation

Syllabus: Spring 2005

Time: 6:05-7:20 Monday, Wednesday
Room: Monday 140 HS
 Wednesday 105 BH
Instructor: Professor Sudkamp
Office Hours: 2:00---4:00 Monday, Wednesday, and by appointment
Office: 431 Russ Engineering Center
email: tsudkamp@cs.wright.edu
phone: 775-5118

The text for this class is *Introduction to Algorithms* by Cormen, Leiserson, Rivest, and Stein (2nd edition). There is an enormous amount of pertinent material in Part I, Foundations, and the Appendix Mathematical Background. Many of these topics have been introduced in previous courses, in particular in Data Structures and Discrete Mathematics. You may often find it necessary to refer to the sections in the book covering these topics. We will briefly review the first four chapters in class.

The course begins by introducing the following general strategies for solving problems and analyzing the complexity of these approaches:

Chapter 2. Divide and conquer algorithms

Chapter 15. Dynamic programming

Chapter 16. Greedy algorithms

After covering these basic problem-solving strategies, we will apply these techniques to a number of applications. Applications that may be considered include

* Parallel algorithms
* Approximation algorithms (chapter 35)
* Graph algorithms (chapters 22--26)
* String matching algorithms (chapter 32)

Grading: A midterm exam, a final exam, and two homework assignments will be used to determine the grades for this class. The grade will be determined in following manner

 Midterm 35%
 Final 45%
 Homework 20% (10% each)
The dates for the exams are

 Midterm: Monday, April 25
 Final: Take home

There will be no make-up exams (other than for documented emergencies). Be sure to arrange your schedule to be available for the exam periods.

The in class exam will be open book and open notes.

Attendance: Attendance at classes is strongly recommended. If you miss a class, it is your responsibility to obtain class notes from other students to be prepared for subsequent topics. There will be no make-up exams except for documented emergencies.