The Jovian Ionospheric E Region

Y. H. Kim

Jane L. Fox

Wright State University - Main Campus, jane.fox@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation
Abstract. We have constructed a model of the Jovian ionosphere that includes direct photoionization of hydrocarbon molecules. A high resolution solar spectrum was synthesized from Hinteregger’s solar maximum spectrum (F7905ON) and high resolution cross sections for photoabsorption by H₂ bands in the range 842 to 1116 Å were constructed. Two strong solar lines and about 30% of the continuum flux between 912 and 1116 Å penetrate below the methane homopause despite strong absorption by CH₄ and H₂. We find that hydrocarbons (mainly C₂H₄) are ionized at a maximum rate of 55 cm⁻³sec⁻¹ at 320 km above the ammonia cloud tops. The hydrocarbon ions produced are quickly converted to more complex hydrocarbon ions through reactions with CH₄, C₂H₂, C₂H₃, and C₃H₄. We find that a hydrocarbon ion layer is formed near 320 km that is about 50 km wide with a peak density in excess of 1×10⁴ cm⁻³.

Introduction

Electron density profiles derived from the Pioneer 10 and 11 radio occultation data showed that the Jovian ionosphere is composed of a number of layers; the major one exhibits a density of about 10⁵ cm⁻³ at an altitude of about 1800 km above the ammonia cloud tops (0.6 bar level). Up to seven secondary peaks are also present with maximum densities in the range 10⁴–10⁵ cm⁻³ [Chen, 1981; Fjeldbo et al., 1975, 1976]. The radio occultation experiments aboard the Voyager spacecraft have so far yielded information about only the topside ionosphere [Eshleman et al., 1979a,b]. Ionospheric models have concentrated mainly on reproducing the densities and scale height of topside ionosphere and the main peak [Waite et al., 1983; McConnell et al., 1982]. Atreya et al. [1974] and Atreya and Donahue [1976] proposed that the lower layers may be composed of long-lived metallic ions, similar to those present in the terrestrial ionospheric E region, originating either from Io or from ablation of meteorites. Chen [1981] computed the heavy ion fluxes necessary to explain the observed densities and the wind speeds implied by the shapes of the layers, assuming that they are produced by wind shear.

Prasad and Tan [1974] constructed the first models of the hydrocarbon ion layers. They pointed out that CH₄, with an ionization potential of 9.82 eV, would be ionized by solar Lyman alpha photons, which penetrate below the main ionospheric peak of H⁺ or H₂⁺ ions, although their assumed value for the cross section (5×10⁻¹⁷ cm²) has been criticized as too large by Strobel [1975]. The models of Atreya and Donahue [1975, 1976] neglected direct ionization of hydrocarbons other than CH₄, including only reactions of He⁺, H⁺, and H₂⁺ with CH₄ as sources of hydrocarbon ions. They estimated that photolysis of methane contributes less than 3% of the total electron density. Waite et al. [1983] neglected hydrocarbon ions in their model of the Jovian ionosphere, but Waite [1981] included photoionization of hydrocarbon ions as well as CH₄ in his model of the ionosphere of Saturn. He found that CH₄⁺ and C₂H₃⁺ were the most important ions, with maximum densities of the order of 10⁶ cm⁻³ in the lower ionosphere of Saturn. Atreya [1986] suggested that the terminal ions may be larger hydrocarbon ions that result from ion-molecule reactions, but he felt that insufficient data were available to construct a model. Capone et al. [1977] computed the density profiles of CH⁺ and C₂H⁺ produced by cosmic rays in the stratospheres of Saturn, Uranus and Neptune.

Recently, much new data has become available on reactions of hydrocarbon ions with neutral species and with electrons (dissociative recombination), often in connection with applications to models of the interstellar medium. Many of the ion-neutral reactions, including reactions of hydrocarbon ions with H, H₂, and small hydrocarbons have been compiled by Anicich and Huntress [1986]. In previous models, dissociative recombination reactions of hydrocarbon ions such as C₂H₄⁺ were considered to proceed with rather large rate coefficients of 2–4×10⁻⁶ cm³ s⁻¹ at 300 K [Atreya and Donahue, 1976; Waite, 1981; Strobel and Atreya, 1983; Atreya, 1986]. These estimates were based partly on values measured in pulse radiolysis experiments in gases at relatively high pressure [e.g. Maier and Fessenden, 1975; Rebbert et al., 1973]. Because clustering occurs at these pressures, the rate coefficients obtained are often considerably larger than those measured by other methods and should be considered only as upper limits [Mitchell, 1990].

We have included photoionization of CH₄, C₂H₂, C₂H₃, and C₂H₄, in addition to photoionization of CH₃, the only source included in previous Jovian ionospheric models. Solar photons in the 912–1110 Å range are absorbed by H₂ in discrete transitions, mostly in the Lyman and Werner band systems. Consequently, although the photons near the centers of the lines are absorbed above the CH₄ homopause (about 420 km), radiation in the far wings of the lines penetrates more deeply, causing direct ionization of hydrocarbon molecules down to about 300 km. We show here that these production rates are significant.

In addition, previous models assume diurnally averaged solar fluxes to account for the rapid rotation of the planet (period of 9.84 hours) and the long lifetime of H⁺, which, because it is destroyed finally by radiative recombination, has a lifetime of 600 hours (about 60 Jovian
days) near 650 km. The hydrocarbon ions, by contrast, are destroyed ultimately by dissociative recombination, and the lifetime near 320 km is much shorter, about 15 minutes. The use of half the solar flux is not appropriate for these ions. We have therefore computed the steady state distribution of ions for half the solar flux to obtain the \(\mathrm{H}^+ \) ion densities. We then carry out a time dependent calculation in which we compute the densities of the ions with the solar fluxes appropriate to the local time and latitude for a full Jovian day. The \(\mathrm{H}^+ \) densities do not change perceptively during this time period and the hydrocarbon ions approach their daytime maximum values shortly after noon. We show here that a layer of hydrocarbon ions is produced with a total maximum density on the order of \(10^4 \, \text{cm}^{-3} \).

The Model

The density profiles of \(\mathrm{H}_2 \) and \(\mathrm{He} \) were taken from the model of Atreya et al. [1981], which is based on the Voyager ultraviolet stellar occultation measurements. The densities of \(\mathrm{CH}_4, \mathrm{C}_2 \mathrm{H}_2, \) and \(\mathrm{C}_2 \mathrm{H}_4 \) were computed in the model, but the values at the lower boundary (200 km) were taken to be those determined in the mesospheric model of Gladstone [1982], which is consistent with data obtained from the Voyager UV stellar occultation experiment [Festou et al., 1981]. We assume that the electron and ion temperatures are in equilibrium with the neutral temperature below an altitude of 2500 km, as suggested by Waite et al. [1983].

A high resolution (0.001 Å) solar spectrum was synthesized from the F79050N solar maximum spectrum of Hinteregger [private communication; see also Torr et al., 1979] by assuming that all solar lines except Lyman \(\beta \) and \(\gamma \) are formed at a temperature of \(10^6 \) K. For Lyman \(\beta \) we used the measured width and shape [Lemaire et al., 1978] and a similar profile for Lyman \(\gamma \). High resolution cross sections for photoabsorption by \(\mathrm{H}_2 \) bands in the range 842 to 1116 Å were constructed using a Voigt line shape. We include absorption in the Lyman and Werner bands and in the Rydberg band systems \(\mathrm{B}^1\Sigma^+ \rightarrow \mathrm{X}^1\Sigma^+ \), \(\mathrm{B}^1\Sigma^+ \rightarrow \mathrm{X}^1\Sigma^+ \), and \(\mathrm{B}^2\Pi_g \rightarrow \mathrm{X}^2\Pi_g \). Other higher Rydberg band systems lie in the spectral range where the \(\mathrm{H} \) atom continuum absorption is dominant. The \(\mathrm{H}_2 \) ground state population is assumed to be in a Boltzmann distribution of vibration-rotation levels characterized by the local neutral temperature. The oscillator strengths, transition probabilities, and dissociation probabilities were obtained from a compilation of J. H. Black [private communication; c.f. Black and van Dishoeck, 1987]. Electron impact ionization cross sections for \(\mathrm{H}_2 \) were taken from Rapp et al. [1965]. Photoionization cross sections of \(\mathrm{H}_2, \mathrm{He}, \) and \(\mathrm{H} \) were adopted from Backx et al. [1976], Kirby et al. [1979], and Samson [1986], respectively. We have compiled photoionization and photoabsorption cross sections for methane, acetylene, ethylene, and ethane, including Samson et al. [1989] and Lee and Chiang [1983] for methane, Ibiuki et al. [1989] for ethylene, and Hayashi et al. [1982] for acetylene. We have assumed that \(\mathrm{CH}_3 \) is ionized by Lyman alpha photons with a cross section of \(1.2 \times 10^{-17} \, \text{cm}^2 \) [Strobel, 1975].

The neutral hydrocarbon photochemistry was taken mostly from the models of Strobel [1969, 1975] as updated by Yung and Strobel [1980], Waite [1981] and Gladstone [1982], although in our calculation the neutral and ion chemistry are coupled. The hydrocarbon densities near the methane homopause are affected by inclusion of ion chemistry because ion-molecule reactions convert some of the hydrocarbons (\(\mathrm{CH}_4, \mathrm{C}_2 \mathrm{H}_2 \)) to more complex hydrocarbon ions.

Ion-neutral reactions for hydrocarbon ions with one or two carbon atoms were taken from the compilation of Anicich and Huntress [1986]. Hydrocarbon ions generally react with methane and acetylene to yield larger hydrocarbon ions. The hydrocarbon ions thus formed then react to form even larger hydrocarbon ions. Ultimately these ions will be destroyed by dissociative recombination. We have individually included hydrocarbon ions with one or two carbon atoms. We have included all larger ions in the classes \(\mathrm{C}_2 \mathrm{H}_3^+, \) and \(\mathrm{C}_3 \mathrm{H}_4^+ \), and we have used an average dissociative recombination coefficient of \(3.5 \times 10^{-7} (300/T)^{0.5} \, \text{cm}^3 \text{s}^{-1} \), based on the measurements of Adams and Smith [1988] for a mixture of \(\mathrm{C}_2 \mathrm{H}_3^+ \) and \(\mathrm{C}_3 \mathrm{H}_4^+ \). For hydrocarbon ions for which no measurements are available, we assume a dissociative recombination coefficient of \(3 \times 10^{-7} (300/T)^{0.5} \, \text{cm}^3 \text{s}^{-1} \), which is similar to the values used currently in models of the interstellar medium [e.g. Millar et al., 1988; van Dishoeck and Black, 1986]. Products of dissociative recombination of hydrocarbon ions were deduced based on the considerations put forward by Bates [1986]. Equal branching ratios are assumed among dissociative channels. For \(\mathrm{H}_2^+ \) recombination we have adopted a conservative value of \(2 \times 10^{-9} \, \text{cm}^3 \text{s}^{-1} \) at 300 K as suggested recently by Hu et al. [1988].

In order to bring the \(\mathrm{H}^+ \) densities in the topside ionosphere into agreement with the measurements, we have included loss of \(\mathrm{H}^+ \) in the reaction with \(\mathrm{H}_2 (v \geq 4) \) by assuming an effective reaction coefficient of \(10^{-15} \, \text{cm}^3 \text{s}^{-1} \), which corresponds to a vibrational temperature of 1470 K with a rate of \(2 \times 10^{-9} \, \text{cm}^3 \text{s}^{-1} \). This value is close to that calculated by Cravens et al. [1987] for altitudes above 700 km [see also McConnell and Majeed, 1987].

We have first solved the steady state continuity equations for ions and neutrals, including chemical production and loss and transport by diffusion and eddy diffusion for neutral species and by ambipolar diffusion for ions. In the topside ionosphere, above 700 km, \(\mathrm{H}^+, \mathrm{H}_2^+, \mathrm{H}_3^+, \mathrm{He}^+, \mathrm{HeH}^+, \) and \(\mathrm{H} \) were included. Below 700 km, the equations were solved for 32 species, including \(\mathrm{H}^+, \mathrm{H}_2^+, \mathrm{He}^+, \mathrm{H}_3^+, \mathrm{HeH}^+, \mathrm{CH}_2^+, \mathrm{CH}_3^+, \mathrm{CH}_4^+, \mathrm{CH}_5^+, \mathrm{CH}_6^+, \mathrm{C}^+, \mathrm{C}_2 \mathrm{H}_2^+, \mathrm{C}_2 \mathrm{H}_3^+, \mathrm{C}_2 \mathrm{H}_4^+, \mathrm{C}_2 \mathrm{H}_5^+, \mathrm{C}_2 \mathrm{H}_6^+, \mathrm{C}_3 \mathrm{H}_2^+, \mathrm{C}_3 \mathrm{H}_3^+, \mathrm{C}_3 \mathrm{H}_4^+, \mathrm{C}_3 \mathrm{H}_5^+, \mathrm{C}_3 \mathrm{H}_6^+, \mathrm{C}_4 \mathrm{H}_2^+, \mathrm{C}_4 \mathrm{H}_3^+, \mathrm{C}_4 \mathrm{H}_4^+, \mathrm{C}_4 \mathrm{H}_5^+, \mathrm{C}_4 \mathrm{H}_6^+, \mathrm{C}_5 \mathrm{H}_{2}^+, \mathrm{C}_5 \mathrm{H}_3^+, \mathrm{C}_5 \mathrm{H}_4^+, \mathrm{C}_5 \mathrm{H}_5^+, \mathrm{C}_5 \mathrm{H}_6^+, \mathrm{C}_6 \mathrm{H}_{2}^+, \mathrm{C}_6 \mathrm{H}_3^+, \mathrm{C}_6 \mathrm{H}_4^+, \mathrm{C}_6 \mathrm{H}_5^+, \mathrm{C}_6 \mathrm{H}_6^+, \mathrm{H} \), and \(\mathrm{H} \). The two regions were joined by matching the fluxes and densities of \(\mathrm{H}^+, \mathrm{H}_2^+, \mathrm{H}_3^+, \mathrm{He}^+, \mathrm{HeH}^+, \) and \(\mathrm{H} \) at the boundary. A density dependent value of the eddy diffusion coefficient of \(K_A = 1.4 \times 10^8 (10^{13}/M)^{1/2} \, \text{cm}^2 \text{sec}^{-1} \) was adopted, where \(M \) is the total number density [cf. Atreya, 1986; Waite et al., 1983]. A magnetic dip angle of 45° is used to represent the mid-latitude ionosphere. After obtaining the steady state densities of ions and neutrals, we solve the time dependent continuity equations with the steady state densities as initial conditions over a full Jovian day.
For the time integration we use a step size of 24.5 minutes.

Results

Two strong solar lines (C III at 977.02 Å and O VI at 1031.91 Å) and about 30% of the continuum flux between 912 and 1116 Å penetrate below the methane homopause despite strong absorption in the H2 Lyman and Werner bands and by methane. Figure 1 shows altitude profiles of the production rates of the major hydrocarbon ions, with profiles of the direct production of He+, H+ and H2+ shown also for comparison. We find that the maximum hydrocarbon ion production rate is about 55 cm⁻²sec⁻¹ at 320 km for a solar zenith angle of 22.5°, which is approximately the same as the maximum production rate of H2+ ions in the F region. Direct production by photoionization of four ions, C2H 5+, C2H4+, CH₄ +, and C2H₄ +, is larger than the production of CH₃ + by Lyman alpha. We find that ionization of acetylene is the most important ionization process, but that conclusion depends on the ratio of C₂H₆ to CH₄ above 320 km, for which no measurements are available.

The resulting ion densities at local time of noon at 22.5° latitude are shown in Figure 2. The total density of hydrocarbon ions maximizes at 320 km with a value of about 1.1 × 10⁴ cm⁻³. These densities are significantly greater than those computed by Prasad and Tan [1974] and Atreya and Donahue [1976]. Furthermore, Gladstone [1999, private communication] has recently pointed out that the density of propyne (CH₃C₂H) may be comparable or greater than that of ethylene at 300 km. If propyne has a similar density profile to that of ethylene around 320 km, production of CH₃C₂H+ would increase the peak electron density by about 15%. The lower ionospheric layers at mid-latitudes have been only observed by the Pioneer 10 ingress radio occultation and no observations for small solar zenith angles are available. It is, however, highly probable that part of L₆ or L₇ peak in the Pioneer 10 ingress profile is due to hydrocarbon ions. Similar hydrocarbon ion layers would be expected in the atmospheres of all the outer planets.

Acknowledgments. We thank J. H. Black for helpful discussions and for providing us with his compilation of data on the H₂ band systems. This work has been supported in part by NASA grant NAGW-665 to the Research Foundation of State University of New York at Stony Brook.

References

Backx, C., G. R. Wight, and M. J. Van der Wiel, Oscillator strengths (10 – 70 eV) for absorption, ionization and dissociation in molecular hydrogen, molecular

Kirby, K. et al., Photoionization and photoabsorption cross sections of He, O, N_2 and O_2 for aeromical calculations, At. Data Nuc. Data Table, 23, 63, 1979.

Y. H. Kim, Department of Earth and Space Sciences, State University of New York, Stony Brook, NY 11794.

J. L. Fox, Department of Mechanical Engineering, State University of New York, Stony Brook, NY 11794.

(Received September 24, 1990; revised November 12, 1990; accepted November 26, 1990.)