1994

Rate Coefficient for the Reaction $N + NO$

Jane L. Fox

Wright State University - Main Campus, jane.fox@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/physics

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Repository Citation
http://corescholar.libraries.wright.edu/physics/337

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Rate coefficient for the reaction \(N + NO \)

J. L. Fox
Institute for Terrestrial and Planetary Atmospheres and Marine Sciences Research Center, State University of New York, Stony Brook

Abstract. Evidence has been advanced that the rate coefficient for the reaction \(N + NO \rightarrow N_2 + O \) has a small positive temperature dependence at the high temperatures (900–1500 K) that prevail in the terrestrial middle and upper thermosphere by Siskind and Rusch (1992), and at the low temperatures (100–200 K) of the Martian lower thermosphere by Fox (1993). Assuming that the rate coefficient recommended by the Jet Propulsion Laboratory evaluation (DeMote et al., 1992) is accurate at 300 K, we derive here the low temperature value of the activation energy for this reaction and thus the rate coefficient that best fits the Viking I measured NO densities. We find that the fit is acceptable for a rate coefficient of about \(1.3 \times 10^{-10}(T/300)^{0.5}\exp(-400/T) \) cm\(^3\) s\(^{-1}\) and better for a value of about \(2.5 \times 10^{-10}(T/300)^{0.5}\exp(-600/T) \) cm\(^3\) s\(^{-1}\).

Introduction

The reaction

\[N + NO \rightarrow N_2 + O \] \hspace{1cm} (1)

is the major loss process for odd nitrogen in the thermosphere of Venus, Earth, and Mars. A temperature-independent rate coefficient for (1) of \(3.4 \times 10^{-11} \) cm\(^3\) s\(^{-1}\) over the temperature range 200–400 K [Lee et al., 1978] has been recommended by the Jet Propulsion Laboratory (JPL) evaluation for many years [e.g., DeMote et al., 1992], and this value has generally been used in models for temperatures outside this range as well. Recently, Siskind and Rusch [1992] published a study of NO in the terrestrial thermosphere, in which they considered the effects of the newly revised rate coefficient [DeMote et al., 1990] for the reaction

\[N(\text{4S}) + O_2 \rightarrow NO + O, \] \hspace{1cm} (2)

on the densities and solar cycle variation of NO. They found that use of the revised rate coefficient results in increased production of NO and leads to a significant discrepancy in the measured and model NO densities. They suggested that this discrepancy could be resolved if the rate coefficient for (1), \(k_1 \), has a weak positive temperature dependence, which would indicate the presence of a small activation barrier. Assuming the recommended value of \(k_1 \) to be accurate at room temperature, Siskind and Rusch [1992] found that the terrestrial NO data could be better fitted by their models if the rate coefficient for the temperature range of interest, about 900–1500 K, were given by \(1.6 \times 10^{-10}\exp(-460 \pm 60/T) \) cm\(^3\) s\(^{-1}\). This value is similar to the laboratory value of Clune and McDermid [1975] \((8.2 \times 10^{-11}\exp(-410 \pm 120/T) \) cm\(^3\) s\(^{-1}\), which was rejected by the JPL evaluators. Recently, Davidson and Hanson [1990] carried out high-temperature laboratory measurements of the rate coefficient for reaction (1), and their recommended value, \(7.12 \times 10^{-10}\exp(-787/T) \) cm\(^3\) s\(^{-1}\), also suggests the presence of a small activation barrier.

In an independent study of odd nitrogen in the Martian thermosphere Fox [1993] suggested that the model NO densities could be brought into agreement with the values measured by Viking [Nier and McElroy, 1976] only if the total production rate of odd nitrogen were increased or the total loss rate were decreased. Generally, Martian model NO densities have been found to be substantially lower than the measured values [McElroy et al., 1976; Yung et al., 1977; Krasnopolsky, 1993]. Since the total production rate of odd nitrogen on Mars is fairly well constrained, we concluded that the recommended rate coefficient for (1) does not apply to the temperatures (100–200 K) that prevail in the Martian lower thermosphere. We found that adoption of a temperature-dependent rate coefficient like those reported by Clune and McDermid [1975] or Davidson and Hanson [1990] brings our model into substantial agreement with the measurements. We made no attempt to optimize the value of the rate coefficient, and our study did not address the sensitivity of the density profile to the value of the rate coefficient. Moreover, the temperature profile that was adopted in the previous investigation was not that derived from Viking measurements, but a fit to an analytical functional form designed to reproduce the Viking measured CO\(_2\) densities over a large altitude range [Fox and Dalgarno, 1979].

We consider here whether the Martian NO density profiles can provide more information about the low
temperature rate coefficient for reaction (1). Assuming that the JPL recommended value is accurate at 300 K, we derive a best fit for E_a/R and thus for k_1 to the NO densities from Viking 1. We assume a rate coefficient of the form $A \times (T/300)^{0.5} \exp(-E_a/RT)$, where E_a is the activation energy and $A \times (T/300)^{0.5}$ is the preexponential (Arrhenius) factor. We have chosen to include the temperature dependence of the preexponential factor explicitly because in the low temperature regime a small change in temperature can be a large fraction of the absolute temperature. Since the accuracy of the data and model do not permit fine-tuning, we tested values of E_a/R from 100 to 800 K in increments of 100 K. The preexponential factor for each value of the activation temperature was then fixed by the requirement that the value of k_1 be 3.4×10^{-11} cm3s$^{-1}$ at 300 K.

Calculations and Results

The temperature profiles derived from the Viking 1 mass spectrometer data are shown in Figure 1 [Nier and McElroy, 1977]. The Viking 1 NO densities were reported in the altitude range from about 128 to 145 km, where the reported temperatures are about 110-160 K [Nier and McElroy, 1976]. We have constructed a low solar activity model of the Martian thermosphere-ionosphere, in which we compute the densities of 12 ions and 5 minor neutral constituents over the altitude range 100 to 400 km. This model is based on measured density profiles of CO$_2$, N$_2$, CO, Ar, and O$_2$ from the Viking 1 mass spectrometer [Nier and McElroy, 1976]. The O densities were derived from model calculations of the O$_2^+$ and CO$_2^+$ densities, which were measured by the retarding potential analyser on the Viking spacecraft [Hanson et al., 1977]. The model is described fully by
Figure 3. Arrhenius plots (Log k_1 vs. $10^4/T$) for the analytical expressions derived for some of the measurements and models over the temperature range of validity for each study. The dot-short-dashed curve labeled "D&H" refers to the high temperature measurements of Davidson and Haason [1990], the dashed curve labeled "C&M" to the measurements of Clyne and McDermid [1975], the short-dash-long-dash curve labeled "Lee" to the measurements of Lee et al. [1978] (which are recommended by the JPL evaluation [DeMore et al., 1992]). The dot-long-dashed curve labeled "S&R" is the rate coefficient derived from the terrestrial thermosphere model of Siskind and Rusch [1992]. The solid curve is the value from 100 to 200 K derived in this work.

Discussion and Conclusions

One might argue that the discrepancy in the terrestrial NO densities could be rectified if the recently revised rate coefficient for (2) were assumed to be incorrect. Certainly this cannot resolve the problem with Martian thermospheric NO, where, because the O_2 mixing ratio in the thermosphere is very small, about 1×10^{-3} [Nier and McElroy, 1977], (2) is not important. Moreover, the model NO values on Mars are too small, whereas the model values for Earth are too large. Siskind and Rusch [1992] argue that the JPL recommended rate coefficient may apply to low temperatures but that a second channel opens up at high temperatures [Cohen, 1991], causing the rate coefficient to increase. We suggest here that also at temperatures...
that are lower than those in the terrestrial middle atmosphere, the recommended rate coefficient is inadequate and that the temperature dependence of (1) extends to very low temperatures as well. This may have important implications also for odd nitrogen in the terrestrial lower thermosphere.

In Figure 3 we present an Arrhenius plot of the analytical expressions for the rate coefficients for (1) as derived from the measurements by Davidson and Hanson [1990], Clyne and McDermid [1975], and Lee et al. [1978] (that recommended by DeMore et al. [1992]) compared to those derived from the the model calculation of Siskind and Rusch [1992] and in this work. Each rate coefficient is shown over the temperature range of validity stated by the investigators. There appears to be general agreement between the measured and model rate coefficients over a broad temperature range, except for the temperature-independent value at low temperatures. The evidence for a temperature dependence in the rate coefficient seems compelling.

Thus there are now two independent model studies of the thermospheres of two different planets, in addition to the measurements of Clyne and McDermid [1975] and Davidson and Hanson [1990], that suggest that the temperature-independent value of the rate coefficient for reaction (1) recommended by the JPL evaluators for the temperature range 200–400 K does not apply to temperatures outside this range. It is hoped that this study and that of Siskind and Rusch [1992] will encourage measurement of this rate coefficient over a wider range of temperatures, both above and below the 200–400 K range appropriate to the terrestrial middle atmosphere.

Acknowledgments. This work has been supported in part by the National Aeronautics and Space Administration under grants NAGW-2238 and NAG-2958 to the Research Foundation of the State University of New York at Stony Brook. The editor thanks D. W. Rusch, T. J. Fuller-Rowell, and another referee for their assistance in evaluating this paper.

References

J. L. Fox, Institute for Terrestrial and Planetary Atmospheres and Marine Sciences Research Center, SUNY-Stony Brook, Stony Brook, NY 11794. (e-mail: Internet.fox@atmsci.sunysb.edu)

(Received June 30, 1993; revised October 20, 1993; accepted November 10, 1993.)