2003

The Structure and Functions of Proteins

Dan E. Krane
Wright State University - Main Campus, dan.krane@wright.edu

Michael L. Raymer
Wright State University - Main Campus, michael.raymer@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation
https://corescholar.libraries.wright.edu/cse/386

This Presentation is brought to you for free and open access by Wright State University's CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@wwwlibraries.wright.edu, library-corescholar@wright.edu.
The Structure and Functions of Proteins
The many functions of proteins

- Mechanoenzymes: myosin, actin
- Rhodopsin: allows vision
- Globins: transport oxygen
- Antibodies: immune system
- Enzymes: pepsin, renin, carboxypeptidase A
- Receptors: transmit messages through membranes
- Vitellogenin: molecular velcro
 - And hundreds of thousands more…
Complex Chemistry Tutorial

- Molecules are made of atoms!
- There is a lot of hydrogen out there!
- Atoms make a “preferred” number of covalent (strong) bonds
 - C – 4
 - N – 3
 - O, S – 2
- Atoms will generally “pick up” enough hydrogens to “fill their valence capacity” in vivo.
- Molecules also “prefer” to have a neutral charge
In the context of a protein…

- Oxygen tends to exhibit a slight negative charge
- Nitrogen tends to exhibit a slight positive charge
- Carbon tends to remain neutral/uncharged

Atoms can “share” a hydrogen atom, each making “part” of a covalent bond with the hydrogen

- Oxygen: H-Bond donor or acceptor
- Nitrogen: H-Bond donor
- Carbon: Neither
Proteins are chains of amino acids

- **Polymer** – a molecule composed of repeating units
Amino acid composition

- **Basic Amino Acid Structure:**
 - The side chain, R, varies for each of the 20 amino acids
The Peptide Bond

- Dehydration synthesis
- Repeating backbone: \(\text{N–C}_\alpha–\text{C} \cdots \text{N–C}_\alpha–\text{C} \)
 \[\text{O} \quad \text{O} \]

- Convention – start at *amino terminus* and proceed to *carboxy terminus*
Peptidyl polymers

- A few amino acids in a chain are called a polypeptide. A protein is usually composed of 50 to 400+ amino acids.

- Since part of the amino acid is lost during dehydration synthesis, we call the units of a protein amino acid residues.
Side chain properties

• Recall that the electronegativity of carbon is at about the middle of the scale for light elements
 • Carbon does not make hydrogen bonds with water easily – *hydrophobic*
 • O and N are generally more likely than C to h-bond to water – *hydrophilic*

• We group the amino acids into three general groups:
 • Hydrophobic
 • Charged (positive/basic & negative/acidic)
 • Polar
The Hydrophobic Amino Acids

Proline severely limits allowable conformations!
The Charged Amino Acids

- Asp, Aspartic acid
- Glu, Glutamic acid
- Lys, Lysine
- Arg, Arginine
The Polar Amino Acids

- Ser, Serine
- Thr, Threonine
- Tyr, Tyrosine
- Cys, Cysteine
- Asn, Asparagine
- Gln, Glutamine
More Polar Amino Acids

And then there’s...

His, Histidine

Gly, Glycine

Trp, Tryptophan
Planarity of the peptide bond

Phi (\(\phi\)) – the angle of rotation about the N-C\(\alpha\) bond.

Psi (\(\psi\)) – the angle of rotation about the C\(\alpha\)-C bond.

The planar bond angles and bond lengths are fixed.

Protein Structure and Function
Phi and psi

- φ = ψ = 180° is extended conformation
- φ : Cα to N–H
- ψ : C=O to Cα
The Ramachandran Plot

- G. N. Ramachandran – first calculations of sterically allowed regions of phi and psi
- Note the structural importance of glycine
Primary & Secondary Structure

- **Primary structure** = the linear sequence of amino acids comprising a protein: AGVGTVPMTAYGNDIQYYGQVT...

- **Secondary structure**
 - Regular patterns of hydrogen bonding in proteins result in two patterns that emerge in nearly every protein structure known: the α-helix and the β-sheet
 - The location of direction of these periodic, repeating structures is known as the secondary structure of the protein
The alpha helix

$\phi \approx \psi \approx -60^\circ$
Properties of the alpha helix

- $\phi \approx \psi \approx -60^\circ$
- **Hydrogen bonds** between C=O of residue n, and NH of residue $n+4$
- 3.6 residues/turn
- 1.5 Å/residue rise
- 100°/residue turn
Properties of α-helices

- 4 – 40+ residues in length
- Often *amphipathic* or “dual-natured”
 - Half hydrophobic and half hydrophilic
 - Mostly when surface-exposed
- If we examine many α-helices, we find trends…
 - Helix formers: Ala, Glu, Leu, Met
 - Helix breakers: Pro, Gly, Tyr, Ser
The beta strand (& sheet)

$\phi \approx -135^\circ$

$\psi \approx +135^\circ$
Properties of beta sheets

- Formed of stretches of 5-10 residues in extended conformation
- *Pleated* – each Cα a bit above or below the previous
- *Parallel/antiparallel*, contiguous/non-contiguous
Parallel and anti-parallel β-sheets

- Anti-parallel is slightly energetically favored

Anti-parallel

Parallel
Turns and Loops

- Secondary structure elements are connected by regions of *turns* and *loops*.
- Turns – short regions of non-α, non-β conformation.
- Loops – larger stretches with no secondary structure. Often disordered.
 - “Random coil”
 - Sequences vary much more than secondary structure regions.
Levels of Protein Structure

- Secondary structure elements combine to form tertiary structure
- Quaternary structure occurs in multienzyme complexes
 - Many proteins are active only as homodimers, homotetramers, etc.
Protein Structure Examples
Views of a protein

Wireframe

Ball and stick
Views of a protein

Spacefill

Cartoon

CPK colors

Carbon = green, black, or grey

Nitrogen = blue

Oxygen = red

Sulfur = yellow

Hydrogen = white