Spring 2012

CS 740: Complexity Theory and Algorithm Analysis

Pascal Hitzler
Wright State University - Main Campus, pascal.hitzler@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/463

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
Brief Description:
What does it mean to say that some computational problem is intrinsically more difficult than some other problem? How can I claim that I have found a good algorithmic solution? The study of these questions gives rise to an area of Theoretical Computer Science called Complexity Theory, which is based on a systematic and thorough formal study of the complexity of problems with respect to their algorithmic solvability, using Turing machines as main conceptual tool. In this class, we will understand how problem and algorithm complexity is measured, and discuss some of the main complexity classes arising from this study. In particular, we will cover the classes P and NP, and their relationship.

Student Learning Outcomes:
Students acquire an in-depth knowledge of the fundamentals of complexity theory which enables them to understand that some problems are inherently computationally expensive. They also learn how to analyze problems and algorithms with respect to their computational complexities.

Instructor:
Dr. Pascal Hitzler, 389 Joshi.
pascal@pascal-hitzler.de, http://www.knoesis.org/pascal
Office hours: Wednesdays 5:00pm to 6:00pm and by appointment.
Please use email as main means of communication with me outside class.

Class Hours:
Mondays and Wednesdays 6:05pm to 7:20pm, Joshi 193.

Course Materials:

Method of Instruction:
Lecture

Evaluation:
Homework (20%), mid-term exam (30%), final exam (50%)
Grading will follow a standard scale (A: 100-90, B: 89-80, C: 79-70, D: 69-60, F: 59-0). These may be adjusted in favor of the students.

Course Outline:
Week 1 Introduction, Big-Oh-notation
Week 2 Turing machines and complexity
Week 3 Turing machines variations
Week 4 Complexity as a realistic measure
Week 5 Nondeterminism and NP
Week 6 Cook’s Theorem
Week 7 NP completeness and reductions
Week 8 Approximation algorithms
Week 9 Beyond NP
Week 10 What we have learned