Summer 2009

CS 240: Introduction to Computer Science I

Vanessa Starkey
Wright State University - Main Campus, vanessa.starkey@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation

This Syllabus is brought to you for free and open access by the College of Engineering and Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
CS 240
Computer Programming I
Summer 2009

Instructor: Mrs. Vanessa Starkey
Office: 336 Russ
Office hours: TR 1:00 – 2:00 p.m.
and by appointment
Phone: 775-5108
e-mail: vanessa.starkey@wright.edu

Class meeting time: TR 2:15-3:30 p.m. (Russ 144)
Lab meeting time: TR 4:10-5:00 p.m. (Russ 346)
Problem session (optional): 1-2 hours per week, time to be determined

Course description: Basic concepts of programming and programming languages are introduced. Emphasis is on structured programming and stepwise refinement. Prerequisite: MTH 130 or MPL 5.

Software: This course uses the Java programming language and the NetBeans IDE. You can install both on your home computer by downloading them from this site: http://java.sun.com/javase/downloads/index.jsp
Choose the JDK 6 Update 14 with NetBeans 6.5.1 download.

WebCT: http://wisdom.wright.edu WebCT will be used for course announcements, submitting projects, and accessing grades. Some course materials will be posted on WebCT. It is the students’ responsibility to check the course site regularly.

Lab Facilities: Open labs are available for your use in Russ 152C, 152D, and the library annex. Russ labs are open 24/7; library lab information can be found at http://www.wright.edu/cats/labs/. Although you may find it convenient to work at home, make a note of these lab locations in the event that you have a problem with your personal computer (hard drive crash, inability to print, etc.). Because lab facilities are so widely available at Wright State, personal computer issues are not an acceptable excuse for turning in late work.

Computer use: The use of computers is not permitted during the lecture periods, with the exception of a documented disability that requires the use of a computer for note-taking.

Students with disabilities: Any student with a disability must inform the instructor of the special accommodations needed as soon as possible. The Office of Disability Services can provide an evaluation to determine what accommodations are appropriate.

Academic misconduct: All work in this class is to be completed individually. While you may find it helpful to discuss the homework assignments with other students in the class, be careful that your work is your own. Also, do not “share” your work with other students. Credit will not be given for work that duplicates another student’s work or that was completed as a team effort. In cases where academic dishonesty is suspected, the university policy on academic misconduct will be followed.
Attendance and Grading Policies

Lab work (CS240L): Lab work from these sections will be included in your CS240 grade. Lab attendance is mandatory, and lab work must be turned in at the end of each lab session. There is no make-up work allowed for lab work; however, the lowest two lab grades received during the term will be dropped before your final grade is calculated.

Homework: Due dates/times for homework will be given when the assignment is handed out. Late work will be accepted up to 24 hours after the initial deadline, but will incur a 10% penalty. Partial credit will be given for incomplete assignments. Your program assignments must run in the NetBeans/Java programming environment as specified in the Software paragraph above. Homework that will not open/run in this environment will not be graded and will be scored as a zero. Please note that just because your program “works” does not mean you will receive full credit. In addition to meeting the requirements of the problem, projects must meet the style guidelines (available on the course WebCT site) and follow good programming practices (which will be discussed in class throughout the term).

Quizzes: A short (5 minute) quiz will be given at the beginning of each lecture session. No make-up quizzes will be given; however, the lowest two quiz grades will be dropped before your final grade is calculated. Quiz problems will be taken from either the previous class lecture material or from the suggested problems list on the lecture schedule.

Exams: Two exams and a comprehensive final exam will be given. Normally, makeup exams will not be given. However, there are two exceptions: (1) the student has an extremely important, binding engagement the same time as the exam. In this case, the student must make arrangements with the instructor to take the exam before the scheduled time. (2) The student has an extreme illness or emergency that prevents him/her from taking the exam. In this case, the student must contact the instructor within 24 hours of the exam time to arrange a make-up, and the student must be able to provide documentation of the illness/emergency.

Grading: The course grade will be calculated by weighting the various graded components of the course as given below. The grading scale is 90-100 A; 80-89 B; 70-79 C; 60-69 D; 0-19 F.

Homework: 25%
Labs: 15%
Quizzes: 10%
Exams (15% each): 30%
Final exam: 20%
Lecture Schedule

<table>
<thead>
<tr>
<th>DATES</th>
<th>TOPIC</th>
<th>READING/SUGGESTED PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 16</td>
<td>Introduction to Java programming</td>
<td>Chapter 1
Pages 22-23: questions 1.1 - 1.5;
questions 1.14 - 1.20</td>
</tr>
<tr>
<td></td>
<td>Introduction to NetBeans IDE</td>
<td></td>
</tr>
<tr>
<td>June 18 - 23</td>
<td>Data types, variables, operators;
Programming Style</td>
<td>Chapter 2
Pages 59-62: questions 2.1 - 2.12;
questions 2.22 - 2.29</td>
</tr>
<tr>
<td></td>
<td>Programming errors</td>
<td></td>
</tr>
<tr>
<td>June 25 – June 30</td>
<td>Boolean expressions
Decision structures
Formatting output</td>
<td>Chapter 3
Pages 94-98: questions 3.1 - 3.17
questions 3.20 - 3.27; 3.31 - 3.32; 3.34</td>
</tr>
<tr>
<td>Thursday, July 2</td>
<td>Exam I (chapaters 1, 2, and 3)</td>
<td></td>
</tr>
<tr>
<td>July 7 - 14</td>
<td>while loops; do-while loops;
for loops; nested loops</td>
<td>Chapter 4
Pages 129-132: questions 4.1 - 4.21</td>
</tr>
<tr>
<td>July 16 - 21</td>
<td>Methods (defining, calling,
arguments/parameters); Scope;
Modularity; abstraction; stepwise refinement; Math class methods</td>
<td>Chapter 5
Pages 167-171: questions 5.1 - 5.2
questions 5.3 - 5.15
5.17 - 5.18</td>
</tr>
<tr>
<td>July 23 - 28</td>
<td>Declaring and using arrays;
for-each loops; methods with array arguments and return values;
methods with variable-length argument list</td>
<td>Chapter 6 (sections 1 - 6)
Pages 219-221: questions 6.1 - 6.16</td>
</tr>
<tr>
<td>Thursday, July 30</td>
<td>Exam II (chapaters 4 and 5)</td>
<td></td>
</tr>
<tr>
<td>Aug 4 - 6</td>
<td>Searching and sorting arrays;
Two-dimensional arrays</td>
<td>Chapter 6 (sections 6.7, 6.8, and 6.10)
Pages 221-222: questions 6.17 - 6.19;
questions 6.25 - 6.28</td>
</tr>
<tr>
<td>August 11 - 18</td>
<td>The String class
Input and output files</td>
<td>Chapter 8 (sections 8.2 and 8.7)
Page 292: questions 8.1 - 8.9
Page 299: questions 8.18 - 8.20</td>
</tr>
<tr>
<td>Final Exam</td>
<td>is Thursday, August 20 -- 2:15 - 3:30 pm</td>
<td></td>
</tr>
</tbody>
</table>