The Electrical Characterization of Semi-Insulating GaAs: A Correlation With Mass-Spectrographic Analysis

David C. Look
Wright State University - Main Campus, david.look@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
The electrical characterization of semiinsulating GaAs: A correlation with massspectrographic analysis

D. C. Look

Citation: J. Appl. Phys. 48, 5141 (1977); doi: 10.1063/1.323593
View online: http://dx.doi.org/10.1063/1.323593
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v48/i12
Published by the American Institute of Physics.

Related Articles
Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals
Appl. Phys. Lett. 102, 071914 (2013)
Enhanced InAs nanopillar electrical transport by in-situ passivation
Appl. Phys. Lett. 102, 053115 (2013)
Diffusion and configuration of Li in ZnO
J. Appl. Phys. 113, 023702 (2013)
Synthesis and local electrical characterization of ZnO microwalls grown on cracked GaN/Si(111) by aqueous method
Thermoelectric properties of lattice matched InAlN on semi-insulating GaN templates

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors

ADVERTISEMENTS
The electrical characterization of semi-insulating GaAs: A correlation with mass-spectrographic analysisa

D. C. Look

Physics Department, University of Dayton, Dayton, Ohio 45469
(Received 23 May 1977; accepted for publication 4 August 1977)

The room-temperature electrical properties of 28 semi-insulating GaAs crystals have been determined by using a mixed-conductivity analysis. It is shown that for most of these samples, such an analysis gives good accuracy for the electron mobility μ_e, and electron concentration n, but poorer accuracy for the hole mobility μ_p, hole concentration p, and intrinsic concentration n_i. The intrinsic concentration is determined at 296 K to be $n_i \approx (1.7 \pm 0.4) \times 10^{10}$ cm$^{-3}$, which compares favorably with the theoretical value deduced from the band gap and the effective masses. From a Fermi-level analysis, the dominant Cr acceptor is found to lie at 0.69 \pm 0.02 eV from the valence band. For many of the samples, the ionized-impurity concentrations N_j have been estimated from spark-source mass-spectrographic measurements and are compared with the concentrations predicted from μ_e. In general, the expected inverse relationship between μ_e and N_j is found to hold, but the scatter in the data is quite large, mainly due to the uncertainties in the mass-spectrographic results.

PACS numbers: 72.80.Ey, 72.60.+g, 72.20.Fr, 71.55.Fr

I. INTRODUCTION

Semi-insulating GaAs, usually produced by doping with Cr and/or O, is of high technological importance because of its usefulness as a substrate material for certain GaAs devices, e.g., FET's. However, in many cases device problems have been shown to be related to the particular substrate used; and, furthermore, it appears that some substrates work well under certain fabrication conditions and poorly under others. Thus, it is important to be able to accurately measure parameters which might correlate with substrate performance, e.g., electrical parameters. In this paper we do an extensive analysis of the electrical properties of semi-insulating GaAs, mainly GaAs:Cr. The measurement of these properties is complicated by mixed conduction, i.e., appreciable conduction by both holes and electrons,2,3 and we will discuss which electrical parameters can be measured well under these conditions. Finally, we will look at some results of spark-source mass spectroscopy (SSMS) and discuss how well the electron mobility relates to the ionized impurity content deduced by SSMS.

II. EXPERIMENTAL CONSIDERATIONS

The samples used in this study were (100) wafers received from eight different manufacturers (designated A, B, C, etc.).4 To the best of our knowledge, the samples designated A, B, and E were grown by the liquid-encapsulated Czochralski (LEC) method, while the rest of the samples were grown basically by the horizontal Bridgeman (HB) technique. The crystals were cleaved to typical rectangular dimensions of about $10 \times 4 \times 0.5$ mm, and five Ohmic indium contacts were soldered onto one surface in a standard Hall configuration.5 (The shorting of the Hall voltage due to the large-area current contacts was accounted for in the calculations.) Prior to being contacted, the samples were etched in 1 : 1 : 50 : $H_2SO_4 : 30\% H_2O_2 : H_2O$, and, after contacting, they were degreased in trichlorethylene, acetone, isopropyl alcohol, and deionized water.

It is extremely important to ensure clean surfaces because even a small amount of surface conduction can shunt the very high bulk resistance. This was the reason for the "curvature" around room temperature in the n_j, p_j, and n_i vs T^{-1} curves in Ref. 2, and probably those in Ref. 6; we believe the same problem may exist in some of the samples used in this study, although to a much lesser extent.

The electrical-measurement apparatus, which has been described earlier,2 was fully guarded and capable of measuring resistances as high as 10^{14} Ω, much higher than the maximum sample resistance of about 10^{10} Ω. The electrical measurements were carried out in a He exchange-gas Dewar, and the samples were allowed to equilibrate for more than 1 h before any measurements were made. Typical electric fields and current densities were about 1 V/cm and 10^{-8} A/cm2, respectively, and the magnetic field was varied between 0 and 18 kG.

III. DATA ANALYSIS

Most GaAs:Cr crystals exhibit mixed conduction; which makes it necessary to measure not only the zero-field Hall coefficient R_H and resistivity ρ, but also their magnetic field B dependencies. It was shown in Ref. 2 that the following relationships hold if the magnetic field dependences of R and ρ are due entirely to mixed conduction:

\begin{align*}
\mu_e &= \frac{1 + b}{1 - b} (R_H \sigma_o), \\
\mu_p &= \mu_e / b, \\
\rho &= \frac{1}{e(-R_H)} \left(1 + b^{-1}\right) \left(1 + \beta (1 + b^{-1})\right), \\
n &= c\rho = \frac{1}{e(-R_H)} \left(1 + b^{-1}\right) \left(\beta + b^{-1}\right), \\
n_i &= (np)^{1/2},
\end{align*}

where

\begin{equation}
b = \frac{1}{2}[A + (A^2 - 4)^{1/2}],
\end{equation}

aWork performed at Avionics Laboratory, Wright-Patterson Air Force Base, under contract No. F33615-76-C-1207.
factors have been assumed, although, if known, they will vary the numerator and denominator of A. Thus, for positive β and $b \gg 1$, it can be concluded that μ_n and n can be calculated to an accuracy as good as (or better than) that of the measured quantities, while μ_p, p, and, to a lesser extent, n_i can have much larger errors, due to their stronger dependences upon b. Specific examples will be given later. However, the problem in calculating μ_n, p, and n_i can be overcome to a certain extent by instead dealing with the product $\mu_n p$.

$$c = \frac{1 + b\beta}{b(b + \beta)}, \quad (7)$$

$$A = \frac{2 + T + T/b^2}{1 - T/b^2} = \frac{(R_o/c_0)^2}{S_p}. \quad (8)$$

Here, S_p is the slope of a $(1/R^2)$-vs. $(\rho_o/\Delta \rho)$ plot, β is the x-axis intercept of an R-vs. $(\Delta \rho/\rho_o)$ plot, and the other symbols have their usual meanings. Unity Hall factors have been assumed, although, if known, they can be entered explicitly, as shown in Ref. 2.

To identify the degree of precision to which each of the quantities in Eqs. (1)–(5) can be calculated, it is necessary to consider their sensitivity to errors in the measured parameters R_o, σ_n, S_p, and β. All of the samples examined in this study had negative (n-type) Hall coefficients (i.e., $R_n < 0$), and all but four had positive β's. Since $b < T/\beta < 1$ (for positive β), it can be seen from Eq. (8) that an error in R_o, σ_n, S_p, or β will vary the numerator and denominator of A in opposite ways, such as to lead to a larger percentage error in A, and thus in b, by Eq. (6). (In general, $A \approx 6$, so $b \approx A$.)

Now consider the quantities μ_n, μ_p, n, p, and n_i. From Eq. (1), it is seen that as long as $b \gg 1$, an error in b will not strongly affect μ_n. Furthermore, errors in R_o, σ_n, or β will vary both the numerator and denominator of μ_n in the same direction and thus somewhat mitigate the effects of such errors. Similarly, n, given by Eq. (4), is not strongly dependent upon b. The quantities p and μ_p, on the other hand, will vary approximately as the first power of b, and n_i as the square root. Thus, for positive β and $b \gg 1$, it can be concluded that μ_n and n can be calculated to an accuracy as good as (or better than) that of the measured quantities, while μ_p, p, and, to a lesser extent, n_i can have much larger errors, due to their stronger dependences upon b. Specific examples will be given later. However, the problem in calculating μ_n, p, and n_i can be overcome to a certain extent by instead dealing with the product $\mu_n p$.

Table I. Calculated electrical parameters for the semi-insulating GaAs samples used in this study.

<table>
<thead>
<tr>
<th>Sample</th>
<th>ρ_o (106 Ω cm)</th>
<th>$-R\rho_o$ (106 Ω cm/V sec)</th>
<th>μ_n (105 cm2/V sec)</th>
<th>μ_p (105 cm2/V sec)</th>
<th>n (106 cm$^{-3}$)</th>
<th>p' (105 cm$^{-3}$)</th>
<th>n_i' (106 cm$^{-3}$)</th>
<th>$\epsilon_p - \epsilon_n$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.63</td>
<td>1.09</td>
<td>3.35</td>
<td>6.60</td>
<td>0.501</td>
<td>5.39</td>
<td>1.64</td>
<td>0.701</td>
</tr>
<tr>
<td>A2</td>
<td>1.21</td>
<td>1.86</td>
<td>3.41</td>
<td>8.44</td>
<td>0.963</td>
<td>4.70</td>
<td>2.13</td>
<td>0.684</td>
</tr>
<tr>
<td>A3</td>
<td>1.04</td>
<td>0.200</td>
<td>2.60</td>
<td>3.31</td>
<td>0.258</td>
<td>13.3</td>
<td>1.86</td>
<td>0.711</td>
</tr>
<tr>
<td>A4</td>
<td>1.19</td>
<td>0.767</td>
<td>2.82</td>
<td>8.45</td>
<td>0.575</td>
<td>5.17</td>
<td>1.72</td>
<td>0.697</td>
</tr>
<tr>
<td>B1</td>
<td>0.335</td>
<td>3.09</td>
<td>5.73</td>
<td>17.2</td>
<td>2.10</td>
<td>16.5</td>
<td>5.89</td>
<td>0.664</td>
</tr>
<tr>
<td>B2</td>
<td>0.697</td>
<td>2.80</td>
<td>5.85</td>
<td>8.42</td>
<td>0.832</td>
<td>12.5</td>
<td>3.23</td>
<td>0.688</td>
</tr>
<tr>
<td>C1</td>
<td>0.930</td>
<td>2.10</td>
<td>3.67</td>
<td>5.31</td>
<td>1.15</td>
<td>6.21</td>
<td>2.67</td>
<td>0.680</td>
</tr>
<tr>
<td>C2</td>
<td>0.634</td>
<td>0.125</td>
<td>2.82</td>
<td>2.83</td>
<td>0.460</td>
<td>21.4</td>
<td>3.14</td>
<td>0.703</td>
</tr>
<tr>
<td>C3</td>
<td>0.733</td>
<td>2.45</td>
<td>2.94</td>
<td>4.90</td>
<td>2.48</td>
<td>3.04</td>
<td>2.74</td>
<td>0.660</td>
</tr>
<tr>
<td>C4</td>
<td>0.0194</td>
<td>0.019</td>
<td>5.86</td>
<td>8.36</td>
<td>1.39</td>
<td>2.64</td>
<td>1.92</td>
<td>0.675</td>
</tr>
<tr>
<td>D1</td>
<td>0.0645</td>
<td>5.74</td>
<td>5.74</td>
<td>16.9</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>E1</td>
<td>0.843</td>
<td>0.767</td>
<td>4.73</td>
<td>5.55</td>
<td>0.392</td>
<td>13.9</td>
<td>2.33</td>
<td>0.707</td>
</tr>
<tr>
<td>E2</td>
<td>1.18</td>
<td>1.84</td>
<td>4.85</td>
<td>7.81</td>
<td>0.549</td>
<td>6.83</td>
<td>1.94</td>
<td>0.699</td>
</tr>
<tr>
<td>F1</td>
<td>0.927</td>
<td>2.31</td>
<td>4.33</td>
<td>11.1</td>
<td>0.978</td>
<td>6.26</td>
<td>2.47</td>
<td>0.684</td>
</tr>
<tr>
<td>F2</td>
<td>0.897</td>
<td>2.77</td>
<td>4.43</td>
<td>5.19</td>
<td>1.04</td>
<td>5.84</td>
<td>2.46</td>
<td>0.682</td>
</tr>
<tr>
<td>F3</td>
<td>0.0630</td>
<td>2.02</td>
<td>3.72</td>
<td>23.9</td>
<td>19.2</td>
<td>69.3</td>
<td>36.5</td>
<td>0.698</td>
</tr>
<tr>
<td>F4</td>
<td>0.355</td>
<td>2.58</td>
<td>3.28</td>
<td>8.07</td>
<td>4.44</td>
<td>7.54</td>
<td>5.79</td>
<td>0.645</td>
</tr>
<tr>
<td>F5</td>
<td>1.36</td>
<td>1.28</td>
<td>3.22</td>
<td>6.77</td>
<td>0.419</td>
<td>7.00</td>
<td>1.71</td>
<td>0.706</td>
</tr>
<tr>
<td>F6</td>
<td>1.21</td>
<td>1.49</td>
<td>4.40</td>
<td>4.77</td>
<td>0.332</td>
<td>9.21</td>
<td>1.75</td>
<td>0.711</td>
</tr>
<tr>
<td>G1</td>
<td>0.794</td>
<td>2.75</td>
<td>4.82</td>
<td>6.38</td>
<td>1.01</td>
<td>7.45</td>
<td>2.74</td>
<td>0.683</td>
</tr>
<tr>
<td>G2</td>
<td>0.522</td>
<td>2.97</td>
<td>4.14</td>
<td>3.44</td>
<td>2.14</td>
<td>7.80</td>
<td>4.08</td>
<td>0.664</td>
</tr>
<tr>
<td>H1</td>
<td>0.961</td>
<td>1.19</td>
<td>4.40</td>
<td>4.21</td>
<td>0.492</td>
<td>10.8</td>
<td>2.31</td>
<td>0.701</td>
</tr>
<tr>
<td>H2</td>
<td>0.786</td>
<td>0.385</td>
<td>4.03</td>
<td>4.03</td>
<td>0.350</td>
<td>16.3</td>
<td>2.39</td>
<td>0.710</td>
</tr>
<tr>
<td>H3</td>
<td>1.21</td>
<td>1.14</td>
<td>4.04</td>
<td>5.89</td>
<td>0.494</td>
<td>7.92</td>
<td>1.98</td>
<td>0.701</td>
</tr>
</tbody>
</table>

Greater than 10% uncertainty in the value of β.

In Table I by a superscript a, the values of β were much more uncertain. However, as we will show below, there also appeared to be some systematic errors, especially in ρ_o. In Table II are presented the results of assuming either a systematic error of 10% in ρ_o or random errors of 5% in ρ_o, R_o, S_p, and β. The samples represented, H_1, H_2, and B_2, cover a wide span of $(R_o\sigma)$ and β. It is clearly seen that, as argued earlier, the values of μ_n and n are quite precise, while the values of μ_p and p are much more uncertain. Furthermore, it is seen that for a systematic error in ρ_o, the induced errors in p and μ_p are of opposite sign and nearly equal magnitude, so that the product $p\mu_p$ is much more precise, as expected. Qualitively, much the same results are realized if a systematic error is assumed in R_o, S_p, or β. We could also consider various combinations of systematic errors, but this would become quite speculative.

To check these ideas, sample E_2 was measured several times, sometimes after conditions of heating (to $420\,^\circ K$) and light irradiation, over a period of about six months. The maximum variation of n from its mean was about 7%, μ_n about 2%, μ_p about 53%, μ_p about 33%, and n_1 about 33%. The relative magnitudes of the variations are in rough agreement with what might be expected from Table II and confirm the precision of the measured n and μ_n.

The value of n_1 (or n'_f) should be a constant and should not correlate with any other quantity. However, there is a correlation with ρ_o, as shown in Fig. 1, and the tail of this curve, at least, cannot be accounted for by variations in room temperature. Again referring to Table II, we can infer that if the apparent ρ_o is too low, for some reason, then the apparent n_1 will be too high, other things being equal. A good candidate for causing this is surface conduction. We have found that etching and degreasing a sample often raises its resistivity significantly. Possibly our cleaning procedure is not adequate to totally eliminate surface conduction in all of the samples. Another possibility is that, at the lower resistivities, mechanisms other than mixed conductivity are contributing to the magnetic field dependence of R and ρ. This is supported by the fact that these dependences are more uncertain for the samples having large apparent $n_1's$. A third possible explanation of the problem is the existence of long-lived traps, which keep one or both of the carrier concentrations above their thermal-equilibrium values for long periods of time (several hours). We have seen such an effect after light irradiation, and it occurs predominantly in those samples having apparent values of n_1 which are too high.

Whatever the mechanism is, it seems to affect primarily the measured hole concentrations. Thus, as mentioned earlier, in three measurements of sample E_2 over a period of several months, n'_f decreased from 2.77×10^5 to $1.93 \times 10^5\,\text{cm}^{-3}$, mainly due to a large decrease in ρ, because n and μ_n remained unchanged to within 7% and 2%, respectively.

One way to minimize the aforementioned surface-conduction effects is to go to higher temperatures, since the bulk resistivity decreases very rapidly with

Table II. Error analysis for three representative samples (all units are $\%$).

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\Delta \rho$</th>
<th>$\Delta \rho$</th>
<th>$\Delta \rho$</th>
<th>Δn</th>
<th>Δn</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>-6</td>
<td>+22</td>
<td>-27</td>
<td>+7</td>
<td>-12</td>
</tr>
<tr>
<td>H_2</td>
<td>-4</td>
<td>+24</td>
<td>-27</td>
<td>-5</td>
<td>-17</td>
</tr>
<tr>
<td>B_1</td>
<td>-4</td>
<td>+27</td>
<td>-28</td>
<td>-6</td>
<td>-18</td>
</tr>
<tr>
<td>H_2</td>
<td>5</td>
<td>19</td>
<td>22</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>B_2</td>
<td>4</td>
<td>21</td>
<td>27</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>B_2</td>
<td>3</td>
<td>23</td>
<td>27</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

$$p\mu_p = \frac{\sigma_p}{\varepsilon_0} \left(\frac{1 + \beta n^2}{1 + \beta} \right). \quad (9)$$

This quantity does not depend strongly upon β, and, in fact, errors in β or δ vary the numerator and denominator in the same direction. It is a useful quantity because the typical impurity concentrations in semi-insulating GaAs crystals should not change μ_p significantly from its lattice-limited mobility. Thus, in many cases, a more accurate value of p can be determined by using Eq. (9) with the assumption of a constant $\mu_p = 400 \,\text{cm}^2/\text{Vsec}$. Then, since n can be calculated with reasonable accuracy, as shown above, a good value of $n = (\rho p)^{1/2}$ may be obtained. The value of n_1 should, of course, be a constant at a given temperature and is a good check on the overall accuracy of the calculations for each sample. From the known effective masses ($m_e = 0.068 m_0$ and $m_h = 0.5 m_0$) and the room-temperature band gap [$E_g(296\,^\circ K) = 1.424 \,\text{eV}$], we can calculate a theoretical value $n_1 = 1.5 \times 10^6\,\text{cm}^{-3}$. Any experimental value of n_1 significantly different from this might indicate one of the following problems: (1) surface conduction, which will raise the measured σ_0 and might also affect R_o, β, and S_p; (2) inhomogenities, which will cause an increase of R with B, and thus increase β, and which again may also affect the other quantities; (3) single-carrier contributions to β and S_p, which should be negligible for most of these samples²; (4) large random errors, which occur primarily if the dependence of either R or $\Delta \rho/\rho_o$ on B is very weak. It should be noted that the temperature dependence of n_1 is quite large, greater than $0.2 \times 10^5\,\text{cm}^{-3}/\text{K}$ in the room-temperature region; therefore, a scatter of about $0.4 \times 10^5\,\text{cm}^{-3}$ in the measured values of n_1 is certainly reasonable due to this cause alone. This problem will be addressed in more detail later.

The measured and calculated electrical parameters are presented in Table I. The samples are designated by manufacturer¹ and number; e.g., A₂ denotes manufacturer A, sample No. 2. The values of μ_n, μ_p, and n were calculated from Eqs. (1)–(5), with no added assumptions, while ρ and n' were calculated from Eqs. (9) and (5), with the assumption $\mu_p = 400 \,\text{cm}^2/\text{Vsec}$. The room-temperature Fermi level was calculated from

$$\epsilon_F - \epsilon_F = 0.0255 \ln(4.37 \times 10^{17}/n). \quad (10)$$

Typically, the random errors in ρ_o, R_o, S_p, and β were about 5%, although in some samples, designated
temperature. This was done in the work described in Ref. 2. However, such a requirement reduces the convenience of these measurements and thus their value as a characterization tool. Furthermore, even at room temperature, as we have shown above, the values of \(\mu_n \) and \(n \) should still be fairly reliable, and these are the important parameters for relating to impurity concentration.

It is seen in Fig. 1 that the values of \(n'_t \) at high \(\rho_0 \) tend toward an asymptotic value of about \(1.7 \times 10^6 \) cm\(^{-3} \). This value compares very favorably with the theoretical value calculated earlier from the room-temperature (296 K) band gap. It is important to have a good room-temperature value of \(n_t \) because of its importance in diffusion studies\(^v\) and certain device calculations,\(^v\) among other things. Also shown in Fig. 1 is the theoretical maximum resistivity \(\rho_{\text{max}} = [2en'_t(\mu_n\mu_p)^{1/2}]^2 \times 10^6 \) cm\(^{-3} \), calculated by using values of \(\mu_n = 3000 \) and \(\mu_p = 300 \) cm\(^2\)/V sec. For higher-mobility material, \(\rho_{\text{max}} \) would be somewhat lower than this, but it is apparent that much of the commercially available semi-insulating GaAs is within a factor of 2 of its maximum theoretical resistivity.

Several other observations may be made from the data of Table 1. For example, the fact that Hall measurements in GaAs : Cr crystals almost always indicate \(n \) type, and thermoprobe measurements, \(p \) type,\(^z\) is easily explained by the results of this study; i.e., all of the crystals have negative Hall coefficients, but yet all of the Cr-doped crystals also have \(p > n \) (sample D\(_1\), the lone exception, is O doped). The high mobility ratio \(\mu_p/\mu_n \) pulls \(R_o \) to negative values.

Another observation is that the actual electron mobility \(\mu_e \) is much different, in most cases, than the apparent mobility, \(R_o \sigma_o \), as would be deduced from a simple Hall measurement. Thus, the mixed-conductivity analysis is quite necessary here to get reliable values of electron mobility and concentration.

A third observation concerns the measured Fermi levels which appear to be distributed within a rather narrow energy range. From a simple model of this distribution we can determine the room-temperature Cr energy level. The fraction of ionized Cr acceptors (compensation ratio for the acceptors) is given by

\[
K = \frac{N_{\text{AA}}}{N_{\text{A}}}
\]

\[
= \left(1 + \frac{\epsilon_{\text{AA}} - \epsilon_F}{kT}\right)^{-1},
\]

where \(g_F \) is the degeneracy factor and \(\epsilon_{\text{AA}} \) and \(\epsilon_F \) are the Cr (or deep acceptor) level and Fermi level, respectively, measured with respect to the conduction band. Let \(\epsilon = \epsilon_F - \epsilon_A \). Then we can define density of state functions \(N(\epsilon) \) and \(\gamma(\epsilon) \) such that \(N(\epsilon) d\epsilon = \gamma(\epsilon) dK \), where \(N(\epsilon) d\epsilon \) is the number of samples having energy between \(\epsilon \) and \(\epsilon + d\epsilon \) and \(\gamma(\epsilon) dK \) is the number of samples having a compensation ratio between \(K \) and \(K + dK \). Now, if \(K = 0 \), the sample will be high-conductivity \(p \) type, and if \(K = 1 \), \(n \) type. Within a given Cr-doped boule there will often be high-conductivity regions, especially at the ends. These parts are discarded, of course, but "good" wafers cut from near the discarded regions may have \(K \)'s near 0 or 1.

The point here is that a cross section of commercially obtained semi-insulating GaAs samples may have \(K \) values ranging from say, about 0.1 to 0.9. In the absence of monovalent acceptors near the valence band, we would have \(g_F = 4 \), and we will, for the lack of better information, assume that this value obtains even for our deep acceptor. Then, at room temperature, the maximum in \(N(\epsilon) \) occurs at \(\epsilon_F - \epsilon_A = 0.035 \) eV. To form a reasonable histogram, we let \(d\epsilon = 0.02 \) eV, and find, from Table 1, that the maximum number of samples fall in the bar centered at \(\epsilon_F = 0.69 \) eV, giving \(\epsilon_A = -0.73 \) eV. An error of ±0.02 eV is reasonable here, considering the uncertainty of \(g_F \) and the somewhat arbitrary nature of forming the histogram.

The experimental and theoretical histograms are plotted in Fig. 2. From the experimental histogram, it is seen that a better choice of the \(K \) range might have been 0.2–0.95, but this does not affect the shape of

5144 J. Appl. Phys., Vol. 48, No. 12, December 1977

D.C. Look

Downloaded 04 Mar 2013 to 130.108.169.201. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions
the curve. Other distributions, such as a normal distribution centered at about $K = 0.5$, could be considered also, but it is doubtful that any physically reasonable distribution would significantly change the result for ϵ_a.

Thus, we have fairly well established that a deep level at 0.73 eV from the conduction band (or 0.69 eV from the valence band) is controlling the Fermi level at room temperature. The only established energy levels in this region are due to Cr and O. However, O-doped samples are, in general, more conductive than Cr-doped samples and rarely have a room-temperature Fermi level much greater than 0.60 from the conduction band. Therefore, we believe that the level we have measured is due to Cr. The role of the shallower O, in our model, would simply be to influence the values of K.

It is tempting to compare this value of ϵ_a with the same value deduced earlier from p-vs-T measurements. However, it must be remembered that p-vs-T measurements give essentially a $T = 0\,^\circ\text{K}$ value. Furthermore, this type of measurement has been performed on several other GaAs:Cr samples in this laboratory, and the results include ϵ_a's as high as 0.77 eV, with a mean of about 0.74 eV (from the valence band), near midgap at $T = 0\,^\circ\text{K}$. The simplest explanation of all of these data is that there is an energy level, due to Cr, which remains near the center of the gap as the temperature is changed. This does not preclude, of course, the existence of other levels due to Cr.

Recently, Ashby et al. have studied the temperature dependences of the Ohmic and space-charge-limited currents in a Cr-doped LEC crystal and concluded that the room-temperature Fermi level is controlled by two levels, at 0.40 and 0.98 eV from the conduction band. The concentrations of these two levels were calculated to be 5×10^{12} and 1.5×10^{15} cm$^{-3}$, respectively, and the latter level was attributed to Cr.

In regard to this, we first note that it would be virtually impossible to explain the relatively narrow ϵ_F range near midgap, in our wide variety of samples, by two levels so far from midgap. Second, as will be seen later, mass-spectrographic data show at least two or two orders of magnitude higher Cr concentrations in all of our samples than that calculated for theirs. In fact, a Cr concentration of 1.5×10^{18} cm$^{-3}$ would not be sufficient to compensate the shallow donors in most bulk crystals. Finally, in results from about 10 samples, we have never seen a decrease in the slope of the p-vs-T data at high temperatures ($\sim 400\,^\circ\text{K}$) as was observed by Ashby et al. for their sample. We conclude that their sample was probably not typical of ours, and we reaffirm our belief that, for our samples, the dominant level is near the middle of the gap.

IV. MASS-SPECTROSCOPY RESULTS

For each sample, the SSMS analysis was carried out on a crystal taken from the same wafer, an adjacent wafer in the boule, or, in some cases, from the same crystal as that used for electrical measurements. The detected impurities were B, C, N, O, F, Mg, Al, Si, P, Te, S, Cl, K, Ca, Ti, Cr, Fe, and Ni. All other impurities, except possibly for H, Ta, Au, and Na, had concentrations $<0.5 \times 10^{15}$ cm$^{-3}$. It is known that Si, Te, and S are generally shallow donors (N_D), C, Mg, Fe, and Ni are shallow acceptors (N_A), O is a deep donor (N_{OD}), and Cr is a deep acceptor (N_{AA}). Here, “shallow” is with respect to the Fermi level, which is near midgap. From photoconductivity measurements, it can be deduced that the room-temperature energy level for O lies at about 0.65 eV from the conduction band. Then, if degeneracy factors of $\frac{3}{2}$ and 4 are assumed for the monovalent O and Cr centers, respectively, we can calculate the ionized fractions of these centers: $N'_D = N_D[1 + 2 \exp(-E_F + 0.68)/0.0255]$, and $N'_A = N_A[1 + 4 \exp(-0.73 - \epsilon_F)/0.0255]$, where we have assumed $\epsilon_F = 0$. Since $N'_D = N_D$ and $N'_A = N_A$, we can calculate the expected concentration of ionized impurities: $N_f = N'_D + N'_DD + N'_A + N'_{AA}$. There is, of course, some uncertainty in the O and Cr energy levels and the degeneracy factors, but we believe that the uncertainties in the SSMS results themselves are far more important.

The results are given in Table III and Fig. 3, with N_A, N_D, N_{AA}, and N_{DD} made up from the particular impurities designated above.

It is important to be able to judge the validity of N_f determined in this manner because we have ignored the following possibly important considerations: (1) ionized native defects, such as Ga or As vacancies; (2) clusters of impurities, which would probably reduce the overall impurity scattering; (3) the amphoteric nature of Si and C, which, however, would not reduce the total N_f; (4) complexes, which may or may not be charged; (5) multiply charged impurities. Furthermore, SSMS

FIG. 2. The experimental (solid line) and theoretical (dotted line) density-of-states histograms in ϵ_F space for the model described in the text. The distribution in K space is assumed to be uniform between $K = 0.1$ and 0.9. Here $\epsilon = \epsilon_F - \epsilon_A$, and ϵ_A is assumed to be -0.73 eV. (The zero of energy is at the conduction band.)

5145 J. Appl. Phys., Vol. 48, No. 12, December 1977
results on individual elements can be in error by as much as a factor 2–3, although the relative error in \(N_j \) will not be as large, since \(N_j \), in our analysis, is a sum of the contributions from nine elements. Fortunately, to determine the accuracy of \(N_j \), we have at least three checks. The first criterion that must be satisfied is \(N_{DA} + N_{DD} > N_{DA} \), or else the sample would be low-resistivity (i.e., \(\rho < 10^7 \ \Omega \text{cm} \)) \(\rho \). The second criterion is \(N_{AA} > N_{DP} \), or the sample would be low-resistivity \(n \) type. The third criterion is from charge conservation, \(N_{D} + N_{DD} = N_{A} + N_{AA} \), since \(n \) and \(\rho \) are negligible. Only three samples, \(F_3, F_5, \) and \(H_3 \), violate the first criterion, and only \(B_2 \) violates the second criterion, as seen in Table III. In all four of these cases, the criteria are just barely violated.

The third criterion, that of charge conservation, allows us to establish minimum errors for the \(N_j \); i.e., \(\Delta N_{SSMS} = (N_{D} + N_{DD} - N_{A} - N_{AA}) \). The error bars shown in Fig. 3 are obtained in this way. It may be noted that \(\Delta N_{SSMS} / N_j < 50\% \) for all but one of the samples.

To check the SSMS repeatability, we had three samples from the same wafers as \(E_1, B_2, \) and \(B_3 \), respectively, analyzed on the same spectrometer. In each case, most of the elements of concentration greater than 1 ppmA (4.4 \(\times \) \(10^{16} \ \text{cm}^{-3} \)) repeated to within a factor of 2, and the total \(N_j \) was within 50\%.

There are several possible reasons for this, including mass-spectrometer contamination or inhomogeneous distribution of impurities within a wafer.

Independent mass-spectrographic results on \(A_1-A_4 \) were obtained in a different laboratory, and most of the elemental concentrations agreed to within a factor of 2 (an important exception was Si). Also, independent SSMS and SIMS (secondary-ion mass spectroscopy) results on samples \(B_2 \) and \(B_3 \) showed much less Si and Cr than measured in our study. It is difficult to know whether spectrometer contamination or the lack of good standards is the principal reason for these discrepancies.

To relate \(N_j \) to electron mobility we use the Conwell-Weisskopf formula. The more commonly used Brooks-Herring relationship is not applicable at these low carrier concentrations. By using the known values of the effective mass and dielectric constant, we get, at room temperature,

\[
\mu_j = 7.38 \times 10^{13} \frac{N_j}{N_j \ln(1 + x_j)} \approx 3.42 \times 10^{13} \frac{N_j^{1/3}}{N_j^{1/3}}.
\]

Then, in Matthiessen’s approximation, we calculate \(\mu^{-1} = \mu_j^{-1} + \mu_t^{-1} \), where the lattice-limited mobility is taken to be \(\mu_\ell \approx 8000 \ \text{cm}^2/V \text{s} \). A plot of Eq. (13) is shown in Fig. 3, along with the experimental values of \(\mu_j \) (from electrical measurements) and \(N_j \) (from SSMS). Typically, the probable error in \(\mu_j \) is less than 10\%, while the minimum error in \(N_j \) is shown by an error.

Table III. Mass-spectrographic results for the GaAs samples used in this study (all units are \(10^{16} \ \text{cm}^{-3} \)).

<table>
<thead>
<tr>
<th>Sample</th>
<th>(N_{DA})</th>
<th>(N_A)</th>
<th>(N_D)</th>
<th>(N_{AA})</th>
<th>(N_{DD})</th>
<th>(N_D + N_{DA})</th>
<th>(N_D + N_{DD})</th>
<th>(N_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>38.8</td>
<td>3.4</td>
<td>1.3</td>
<td>8.8</td>
<td>14.6</td>
<td>6.4</td>
<td>9.1</td>
<td>15.5</td>
</tr>
<tr>
<td>(A_2)</td>
<td>29.9</td>
<td>8.4</td>
<td>5.7</td>
<td>8.4</td>
<td>13.3</td>
<td>12.6</td>
<td>10.6</td>
<td>23.2</td>
</tr>
<tr>
<td>(A_3)</td>
<td>71.3</td>
<td>3.3</td>
<td>19.7</td>
<td>29.2</td>
<td>16.4</td>
<td>9.5</td>
<td>31.0</td>
<td>40.5</td>
</tr>
<tr>
<td>(A_4)</td>
<td>86.1</td>
<td>11.9</td>
<td>33.2</td>
<td>15.2</td>
<td>26.1</td>
<td>17.7</td>
<td>46.3</td>
<td>64.0</td>
</tr>
<tr>
<td>(B_1)</td>
<td>55.2</td>
<td>9.2</td>
<td>14.2</td>
<td>2.4</td>
<td>7.5</td>
<td>10.9</td>
<td>17.5</td>
<td>28.4</td>
</tr>
<tr>
<td>(B_2)</td>
<td>35.4</td>
<td>9.6</td>
<td>7.5</td>
<td>4.9</td>
<td>4.4</td>
<td>11.9</td>
<td>9.3</td>
<td>21.2</td>
</tr>
<tr>
<td>(C_1)</td>
<td>58.5</td>
<td>8.5</td>
<td>6.4</td>
<td>8.0</td>
<td>13.3</td>
<td>12.9</td>
<td>10.8</td>
<td>23.7</td>
</tr>
<tr>
<td>(C_2)</td>
<td>123.7</td>
<td>12.4</td>
<td>11.5</td>
<td>79.7</td>
<td>12.8</td>
<td>38.5</td>
<td>18.6</td>
<td>57.1</td>
</tr>
<tr>
<td>(C_3)</td>
<td>37.9</td>
<td>13.3</td>
<td>9.2</td>
<td>8.4</td>
<td>7.1</td>
<td>19.3</td>
<td>12.0</td>
<td>31.3</td>
</tr>
<tr>
<td>(C_4)</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>(D_1)</td>
<td>114.4</td>
<td>29.7</td>
<td>11.0</td>
<td>2.4</td>
<td>38.7</td>
<td>32.0</td>
<td>12.6</td>
<td>44.6</td>
</tr>
<tr>
<td>(E_1)</td>
<td>36.9</td>
<td>9.3</td>
<td>5.3</td>
<td>4.4</td>
<td>13.7</td>
<td>12.0</td>
<td>13.4</td>
<td>25.4</td>
</tr>
<tr>
<td>(E_2)</td>
<td>58.6</td>
<td>14.3</td>
<td>16.8</td>
<td>12.8</td>
<td>7.5</td>
<td>19.9</td>
<td>20.4</td>
<td>40.3</td>
</tr>
<tr>
<td>(F_1)</td>
<td>14.0</td>
<td>3.7</td>
<td>3.1</td>
<td>3.8</td>
<td>1.8</td>
<td>5.6</td>
<td>3.8</td>
<td>9.4</td>
</tr>
<tr>
<td>(F_2)</td>
<td>39.8</td>
<td>16.0</td>
<td>5.3</td>
<td>6.6</td>
<td>8.8</td>
<td>19.5</td>
<td>8.4</td>
<td>27.9</td>
</tr>
<tr>
<td>(F_3)</td>
<td>59.3</td>
<td>15.8</td>
<td>10.2</td>
<td>18.6</td>
<td>5.3</td>
<td>34.2</td>
<td>10.2</td>
<td>44.4</td>
</tr>
<tr>
<td>(F_4)</td>
<td>75.4</td>
<td>17.7</td>
<td>16.7</td>
<td>9.3</td>
<td>15.0</td>
<td>21.7</td>
<td>18.0</td>
<td>39.7</td>
</tr>
<tr>
<td>(G_1)</td>
<td>18.2</td>
<td>5.3</td>
<td>2.0</td>
<td>2.4</td>
<td>6.2</td>
<td>6.5</td>
<td>4.2</td>
<td>10.7</td>
</tr>
<tr>
<td>(G_2)</td>
<td>21.3</td>
<td>5.3</td>
<td>3.8</td>
<td>4.4</td>
<td>4.9</td>
<td>8.4</td>
<td>4.7</td>
<td>13.1</td>
</tr>
<tr>
<td>(H_1)</td>
<td>66.9</td>
<td>15.8</td>
<td>11.5</td>
<td>20.8</td>
<td>8.4</td>
<td>23.0</td>
<td>16.0</td>
<td>39.0</td>
</tr>
<tr>
<td>(H_2)</td>
<td>23.5</td>
<td>2.8</td>
<td>2.7</td>
<td>12.4</td>
<td>3.7</td>
<td>6.1</td>
<td>5.0</td>
<td>11.1</td>
</tr>
<tr>
<td>(H_3)</td>
<td>25.1</td>
<td>5.3</td>
<td>2.5</td>
<td>7.5</td>
<td>2.5</td>
<td>7.9</td>
<td>3.8</td>
<td>11.7</td>
</tr>
</tbody>
</table>
bar. The theoretical curve itself can be in error by several tens of percent due to the approximations in the Conwell-Weisskopf theory and to the use of Matthiessen’s rule. Another consideration, the Hall factor, is probably within 10% of unity at these impurity levels.

Although the correlation between the experimental data and the theoretical line in Fig. 3 is not high, still the line seems to run reasonably well through the middle of the points, and it should be remembered that no “fitting” parameters were employed to accomplish this. Samples falling well above the line, such as D_1, B_1, and B_2, could have impurity clustering and precipitates, which would make their true N_f’s lower than those deduced from the SSMS data. However, as mentioned earlier, independent SSMS results gave significantly lower N_f’s for samples B_1 and B_2, so that they probably lie closer to the line anyway.

It may also be noted that, within the samples of a given manufacturer, the expected inverse relationship between μ_a and N_f generally holds. For example, samples A_1 and A_2 were wafers taken from one end of their respective Czochralski boules, and A_3 and A_4 from the other end. Both μ_a and N_f here reflect the expected uneven incorporation of impurities in such boules.

V. CONCLUSIONS

We have shown that good values of n and μ_a may be obtained for most semi-insulating GaAs:Cr crystals by use of a mixed-conductivity analysis. Attempts to obtain these parameters from simple Hall-effect analyses require complicated models with additional assumptions. We have also shown, from a Fermi-level analysis, that the dominant room-temperature Cr level in the semi-insulating crystals lies at 0.69 ± 0.02 eV from the valence band. Other Cr levels may exist too, of course. We have also measured a good value for the intrinsic carrier concentration $n_i = (1.7 \pm 0.4) \times 10^{16}$ cm$^{-3}$, which agrees well with the theoretical value. Finally, we have examined the relationship between μ_a and N_f, the latter determined from SSMS measurements; the conclusion here is that μ_a is a fairly reliable indicator of N_f. The SSMS results for the total N_f are generally repeatable to within about 50%, but the results for individual elements of concentrations less than 1 ppmA are sometimes not repeatable to within even a factor of 3.

FIG. 3. The total ionized-impurity concentration N_f deduced from mass-spectrographic measurements versus the calculated electron mobility μ_a. The symbols correspond to the sample designations given in Table I. The theoretical line is calculated by combining ionized-impurity scattering and lattice scattering ($\mu_L \approx 8000$ cm2/V sec) according to Matthiessen’s rule.

The Hall Effect and Semiconductor Physics (Dover, New York, 1969), Chap. 2.

1. See, e.g., E.H. Putley, in Semiconductors and Semimetals, Vol. 11, edited by R.K. Willardson and A.C. Beer (Academic, New York, 1975), p. 149. The Brooks-Herring formula was used to calculate the theoretical line. However, the use of the Conwell-Weisskopf formula leads to similar results.

The SSMS results were obtained from Micro-Trace Analytical Services, Industry, Calif.

See, e.g., Ref. 9, p. 146.

Neutral impurities are not taken into account here because most of them would be deep centers, near E_F. Such deep centers should have tightly bound wave functions and thus less scattering power than shallow neutral centers. This fact was not considered in Ref. 2.

For a discussion of the Hall factor in samples for which the Brooks-Herring formula is applicable, see D.L. Rode, in Ref. 7, p. 71.
