Winter 2011

CS 707-01: Information Retrieval

Krishnaprasad Thirunarayan
Wright State University - Main Campus, t.k.prasad@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/cecs_syllabi
Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
http://corescholar.libraries.wright.edu/cecs_syllabi/810

This Syllabus is brought to you for free and open access by the College of Engineering and Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
CS707 Information Retrieval

- **Instructor:** T. K. Prasad
- **Phone No.:** (937)-775-5109
- **Email:** t.k.prasad@wright.edu
- **Home Page:** http://knoesis.wright.edu/tkprasad

- **Quarter:** Winter, 2011.
- **Class Hrs:** 4:10pm-5:25pm, TTh, Fawcett 218
- **Office Hrs:** 3-4pm 395 Joshi Research Center (or by appointment)

Course Objective

- To cover the foundations of information retrieval, and the design, analysis and implementation of IR systems.

Course Prerequisite

- CS600 Data Structures and Algorithms

Course Description

This course will cover models for information retrieval, techniques for indexing and searching, and algorithms for classification and clustering. It will also cover SVM, latent semantic indexing, link analysis and ranking, Map-Reduce architecture and Hadoop, to different degrees of detail, time permitting.

Course Load

The course load includes a programming project (30 pts), a midterm exam (30 pts), and a final exam (40 pts).

Required Texts

Recommended Texts

Reference URLs

- Lucene Text Search Engine (http://lucene.apache.org/)
- Hadoop (http://hadoop.apache.org/core/)
- Singular Value Decomposition (http://www.uwlax.edu/faculty/will/svd/index.html)
- Strang's Linear Algebra Course (MIT) (http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/CourseHome/index.htm)
- Andrew Moore's Statistical Data Mining Tutorials (CMU) (http://www.autonlab.org/tutorials/)
- Matei Zaharia's Introduction to MapReduce and Hadoop (Cloud Computing) (in powerpoint) or (archived video)

Grading

The A/B/C/D/F letter grade will be assigned at the end of the course.

Tentative Class Schedule and Syllabus
<table>
<thead>
<tr>
<th>Class</th>
<th>Topics</th>
<th>Addl. Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Information Retrieval: The Boolean Model</td>
<td>MIR-1</td>
</tr>
<tr>
<td>Class 2</td>
<td>The Vector Space Model: Term Weighting and Scoring</td>
<td>IIR-6, MIR-2</td>
</tr>
<tr>
<td>Class 3</td>
<td>Inverted Index Construction</td>
<td>IIR-1, MIR-8.2</td>
</tr>
<tr>
<td>Class 4</td>
<td>Dictionary and Postings: Query Processing</td>
<td>IIR-2, MIR-7.2</td>
</tr>
<tr>
<td>Class 5</td>
<td>Tolerant Retrieval (B-Trees)</td>
<td>IIR-3</td>
</tr>
<tr>
<td>Class 6</td>
<td>Index Construction</td>
<td>IIR-4, MG-5</td>
</tr>
<tr>
<td>Class 7</td>
<td>Map Reduce Architecture</td>
<td>Hadoop</td>
</tr>
<tr>
<td>Class 8</td>
<td>Index Compression</td>
<td>IIR-5, MG 3.3-4</td>
</tr>
<tr>
<td>Class 9</td>
<td>Vector Space Model: TF-IDF</td>
<td>IIR-6.2-4</td>
</tr>
<tr>
<td>Class 10</td>
<td>Midterm Exam (Feb 8)</td>
<td></td>
</tr>
<tr>
<td>Class 11</td>
<td>Vector Space Model: Ranking Revisited</td>
<td>IIR-6.1, IIR-7</td>
</tr>
<tr>
<td>Class 12</td>
<td>Evaluation in Information Retrieval</td>
<td>IIR-8, MIR-3 IIR-8</td>
</tr>
<tr>
<td>Class 13</td>
<td>Relevance Feedback and Query Expansion</td>
<td>IIR-9, MIR-5.2-4</td>
</tr>
<tr>
<td>Class 14</td>
<td>Text Classification and Naive Bayes</td>
<td>IIR-13</td>
</tr>
<tr>
<td>Class 15</td>
<td>Vector Space Classification</td>
<td>IIR-14</td>
</tr>
<tr>
<td>Class 16</td>
<td>Support Vector Machines</td>
<td>IIR-15, Primer</td>
</tr>
<tr>
<td>Class 17</td>
<td>Flat and Hierarchical Clustering</td>
<td>IIR-16, IIR-17</td>
</tr>
<tr>
<td>Class 18</td>
<td>Latent Semantic Indexing</td>
<td>IIR-18, Refs</td>
</tr>
<tr>
<td>Class 19</td>
<td>Linear Algebra: Matrix Decompositions</td>
<td>SVD-URL</td>
</tr>
<tr>
<td>Class 20</td>
<td>Wrap-Up</td>
<td></td>
</tr>
<tr>
<td>Class *</td>
<td>Web Characteristics</td>
<td>IIR-19</td>
</tr>
<tr>
<td>Class *</td>
<td>Web Search: Crawling and Indexes</td>
<td>IIR-20</td>
</tr>
<tr>
<td>Class *</td>
<td>Link Analysis</td>
<td>IIR-21</td>
</tr>
<tr>
<td></td>
<td>Final Exam (5:45pm-7:45pm, March 15)</td>
<td></td>
</tr>
</tbody>
</table>

http://www.cs.wright.edu/~tkprasad/courses/cs707/cs707.html
1/24/2011
Assignments (Winter 2011)

- Assignment 1. (Sample Medline-1033 dataset)
- Assignment 1 (Alternate)

Exams (Winter 2010)

- Midterm.
- Final.

T. K. Prasad (Jan 3, 2011)