CS 790-01: Privacy-Aware Computing

Keke Chen
Wright State University - Main Campus, keke.chen@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
CS790 - Privacy-Aware Computing

Wright State University, Winter 2012

Credit hours 4
Time: 4:10 pm - 5:25 pm, MW
Location: Russ 302
Course Website: http://www.cs.wright.edu/keke.chen/cs790/, and pilot

Instructor

Keke Chen, Ph.D.
Office: 385 Joshi
Office hours: MW, 2-3:30pm
Email: keke.chen@wright.edu
Phone: (937) 775-4642
Web: http://www.cs.wright.edu/~keke.chen/

Course Description

In this course, we will discuss a set of research papers on various topics of privacy-aware computing: data perturbation, data anonymization, randomized responses, privacy preserving data mining, privacy preserving multivariate statistical analysis, private information retrieval, and secure data outsourcing, etc. Students are expected to read some papers and submit paper summaries. Participation in the class discussion is encouraged. Students will need to finish a course project and give a project presentation. Each project team can have 1-2 people. (4 Hours Lecture).

Prerequisite:

Basic knowledge of statistics, machine learning, data mining, and distributed systems

Text Books and Materials

There is no textbook for this course. All materials will come from recently published papers and online documents. A reference list is at http://www.cs.wright.edu/~keke.chen/cs790/reading_list.htm

Assignments

There will be several reading assignments. Students should submit reading summaries for the assigned papers. Each paper summary consists of a few paragraphs with less than one
page, including the problem, the technical contributions, the strengths and weaknesses of
the approach. There is one term project, which has three parts: presentation, report and
project demo. Some project topics will be given. Students can also use their own project
ideas. There is no exam for this course.

Grading Policy

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading summaries</td>
<td>30%</td>
</tr>
<tr>
<td>Project presentation</td>
<td>10%</td>
</tr>
<tr>
<td>Project report</td>
<td>30%</td>
</tr>
<tr>
<td>Project code & demo</td>
<td>20%</td>
</tr>
<tr>
<td>Class participation</td>
<td>10%</td>
</tr>
</tbody>
</table>

Covered Topics

1. Introduction to privacy aware computing 1 class
2. Data perturbation 3 classes
3. Privacy metrics 1 class
4. Data anonymization 3 classes
5. Randomized responses 1 class
6. Privacy preserving mining: classification, clustering, rule mining, and multivariate analysis 3-4 classes
7. Privacy preserving information retrieval 2 classes
8. Secure data outsourcing 2-3 classes
9. Privacy in online social networks 2-3 classes
10. Location privacy 1-2 classes