Fall 2009

CEG 402/602-01: Introduction to Computer Communication

Jianing Ma
Wright State University - Main Campus

Follow this and additional works at: http://corescholar.libraries.wright.edu/cecs_syllabi
Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
http://corescholar.libraries.wright.edu/cecs_syllabi/931

This Syllabus is brought to you for free and open access by the College of Engineering and Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
CEG402/602 Introduction to Computer Communication

SYLLABUS
Fall 2009
Drop dates: 9/28 no grade; 10/26 with a W

Time/Place
Section 1: 8:00-9:15pm, M, W UH 076

Instructor
Jianing Ma (PhD student), 484 Joshi Research Center
E-mail: send email via WebCT by selecting Jianing Ma in the send list
Office hours: 3:00-4:00pm M, W or by appointment

TA
Hemant Purohit 326 Russ Engineering Center
Monday / Wednesday 6:00 pm – 7:50 pm
E-mail: purohit.5@wright.edu
Office hours:

Prerequisites
The topics that we will cover are self-contained so that a background in networking is not required.
CS24x and proficient in C or C++, Java;
Programming experience in C or C++, Java;
Program development tools: editors, compilers, linkers, debuggers;
Data structures: arrays, stacks, queues, lists, and binary trees.

Textbooks

Webpage
http://wisdom.wright.edu

News Group
Check daily WebCT for announcements, assignment, homework, questions and answers

Course Objectives
This course provides an introduction to basic concepts of communication networks, different types of networks, protocols over different layers, and network applications through lectures, labs, homework, and reading on relevant materials. You will

- Understand networking principles, protocols, and technologies.
- Understand some design and performance issues involved in providing a network service.
- Acquire background for supporting e-commerce, e-government, and e-education.
- Gain hands-on experience with programming techniques for network protocols.
- Obtain background for original research in computer networks.
Students' Responsibilities

You are expected to:

1) read assigned materials prior to class and come up with questions. Reading materials will be assigned in advance.
2) attend classes on a regular and timely basis. Regular class attendance is mandatory and is essential to success in the course. You are responsible for all contents, handouts, and announcements distributed/made in class.
3) complete and turn in your assignments timely. You are expected to write your own programs. Do not copy from or give your work to others, and do not make it possible for others to copy any portions of your work. Violators will receive a zero credit on the assignment.
4) be present for exams at the scheduled times. If there is a catastrophic event that prevents you from taking an exam, please contact the instructor as soon as possible.
5) not disturb/disrupt the class.
6) set up an appointment with the instructor and/or graduate teaching assistant or visit during office hours if you have questions regarding course contents, lectures, handouts, and other problems.

Course Evaluation

You will receive a final course grade comprised of the weighted score earned on all required course assignments and exams.

Methods: % of final grade

1. Participation (show up, in class discussion, in class quizzes, etc): 5%
2. Labs: 30%
3. Homework: 16% (4 homework)
4. Middle term exam: 15% (10/05, Monday in class)
5. Final exam: 34% (11/16, Monday, 8-10:00pm)

Total 100%

Grading scale:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>A</td>
</tr>
<tr>
<td>80-89.9</td>
<td>B</td>
</tr>
<tr>
<td>70-79.9</td>
<td>C</td>
</tr>
<tr>
<td>60-69.9</td>
<td>D</td>
</tr>
<tr>
<td>Below 60</td>
<td>F</td>
</tr>
</tbody>
</table>

Undergraduates and graduates will be graded separately.

Re-grading policy: If you have questions about the way an assignment or exam was graded, you must submit in writing a re-grading request detailing the rationale for re-grading.

Late Submission of Programming Assignments

You may discuss homework assignments with classmates but all solutions must be original and individually prepared.

You will lose 10% of the total points for an assignment for each 24-hour period (or fraction of a 24 hour period) the assignment is late. Late assignments will be accepted up to 4 days after the due date as specified in the assignment handout. Late penalty is accrued on weekends just as during the week. Partial
credits will be given to students who turn in partially completed assignments. Special considerations will be given for students who have a medical excuse for late submission (written proof of illness is required). These considerations may extend to medical emergencies involving children or other family members. Such consideration is at the discretion of the instructor, and will be as reasonable and fair as possible. Special consideration may also be given for employment conflicts (e.g. military duty, travel) if brought to the attention of the instructor prior to the due date for an assignment.

Course requirements for other courses are NOT a valid reason for special consideration.

**Missed Quizzes and Exam**

Missed quizzes and exams can be made up only under extenuating circumstances such as medical emergencies and work conflicts as mentioned above. Please see the instructor as soon as possible if you know you will be unable to attend a quiz or exam. You are expected to schedule your departure for any end of quarter travel after your final exam.

**Plagiarism**

Students are members of a learning community committed to the search for knowledge and truth. Essential to that search is the faithful adherence by all students to the highest standards of honesty and integrity. A grade of “0” or “F” will be assigned to examinations or assignments on which cheating, plagiarism or any other form of academic dishonesty is committed or determined to have occurred. For the detail, see Wright State University Student Handbook under “Academic Dishonesty”.

**Lecture Outline**

The following is the tentative lecture schedule.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>Introduction: computer networks and the Internet</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>Basic networking concepts</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>Application layer: DNS</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>Application layer: Web and HTTP</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>Application layer: FTP, email, content distribution etc</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>Transport layer: UDP</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>Transport layer: TCP</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>Transport layer: principle of reliable transfer (sliding window protocol; selective repeat)</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>TCP reliability and flow control</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Network layer and routing: IP, IP addressing,</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Routing algorithm: link state routing</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>Midterm</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>Routing algorithm: distance vector routing</td>
</tr>
<tr>
<td>Lecture 14</td>
<td>Router: packet forwarding</td>
</tr>
<tr>
<td>Lecture 15</td>
<td>Link layer: Error detection and correction techniques</td>
</tr>
<tr>
<td>Lecture 16</td>
<td>Link layer: Media access control (multiple access) protocols</td>
</tr>
<tr>
<td>Lecture 17</td>
<td>LAN: LAN addresses and ARP, Ethernet,</td>
</tr>
<tr>
<td>Lecture 18</td>
<td>LAN: Ethernet, Hubs, Bridges, Switches</td>
</tr>
<tr>
<td>Lecture 19</td>
<td>LAN: PPP, Wireless Links</td>
</tr>
<tr>
<td>Lecture 20</td>
<td>LAN: ATM, Frame relay, Wireless network</td>
</tr>
<tr>
<td>Review</td>
<td>Review for final exam</td>
</tr>
</tbody>
</table>