Fall 2012

CEG 4520/6520-01: Scientific Visualization and Virtual Environments

Thomas Wischgoll
Wright State University - Main Campus, thomas.wischgoll@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
http://corescholar.libraries.wright.edu/cecs_syllabi/870

This Syllabus is brought to you for free and open access by the College of Engineering and Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Instructor: Dr. Thomas Wischgoll
thomas.wischgoll@wright.edu
485 Joshi Research Center
937-775-5057

Office Hours: Tue/Thur 05:00pm - 06:00pm
(or by appointment)

Textbook: Data Visualization - Principles and Practice
Alexandru C. Telea

Webpage: http://avida.cs.wright.edu/courses/CEG4520/syllabus.html

Welcome to
CEG4520/CEG6520 - Scientific Visualization and Virtual Environments

Instructor: Dr. Thomas Wischgoll

Office Hours: Tue/Thur 05:00pm - 06:00pm
(or by appointment)

Textbook: Data Visualization - Principles and Practice
Alexandru C. Telea

Webpage: http://avida.cs.wright.edu/courses/CEG4520/syllabus.html

Lecture:
Mon 03:30 pm - 04:50 pm
Wed 03:30 pm - 04:50 pm
(Russ 154a)

Exams:
Midterm: Wed, May 2nd, 3:30 pm (in class)
Final project: due Wed, Dec 12th, 11:59 pm

Grading Policy:
30% (assignments) + 30% (midterm) + 40% (final project) = 100%

Each class is different. Therefore, no absolute grading scheme can be defined in advance. However, the following guarantees will always be made:

<table>
<thead>
<tr>
<th>90%</th>
<th>80%</th>
<th>70%</th>
<th>60%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
</tbody>
</table>

Course Goals/Objectives

By the end of this quarter, you will be familiar with techniques used for visualizing various types of data sets, such as medical, vector or general data sets. This includes appropriate visualization methods for geometric, volumetric, and higher dimensional data sets (e.g. vector or tensor data). In addition, you will learn about user modalities, including different input devices and display types for more advanced visualizations.

The outline of the course is as follows:

- Introduction
- From Graphics to Visualization (chapter 2)
- Virtual Environments
- Data Representations (chapter 3)
- The Visualization Pipeline (chapter 4)
- Scalar Visualization (chapter 5)
- Vector Visualization (chapter 6)
- Tensor Visualization (chapter 7)
- Volume Visualization (chapter 10)
- Information Visualization (chapter 11)
- Toolkit-based Visualization
- Web-based Visualization

Prerequisites

- CEG476 or MTH476

If you are unsure about any of these requirements, come talk to me.

Course Format
The course consists of two lectures a week. Attendance of the lectures is not strictly mandatory. However, you are responsible for all materials, announcements, assignments, etc. covered in either the lecture or assignments. If you miss a class, consult a classmate for any missed materials.

The purpose of the class is for everyone to understand the issues involved with visualization. To this end, if you don't understand something during class, please ask. If you are confused, it is likely that a few of your classmates are as well. Also, listen to others' questions. Many times you'll think you understand a concept until you hear someone else's question about it. Dialogue is the best way to learn things, so don't be afraid to speak up. I will not specifically assign reading assignments. However, it is advisable to read along in the text book as we advance in the class.

There will be three assignments to be returned on the specified date, one in class midterm, and one final project. Students taking this course at the 600-level are required to incorporate lighting based on the Phong illumination model in the volume renderer for the final project. The grade will be determined as stated earlier.

Assignments

Three assignments will be given which are due on the following dates:
Assignment 1: due: Thur, September 27th, 11:59 pm
Assignment 2: due: Thur, October 11th, 11:59 pm
Assignment 3: due: Thur, October 25th, 11:59 pm

For implementing the assignments, you can use the PCs in room 154a RC. You can also use any other computer that is available to you. However, you need to be able to demonstrate your software on one of the computers within Russ Engineering Center in 154a RC. You are welcome to exchange top-level ideas with your peers. However, it is not appropriate to exchange code or base your solution to a significant amount on code you found online. On the day the assignment is due, please turn in a snapshot of your software and your source code, including makefiles or project files, packed as a zip or tar file via WebCT. We will have interactive grading sessions where you can demonstrate your final software after the due date.

Office Hours

Office hours are as listed above or by appointment. If you are unable to come to the posted office hours, contact me and we can arrange to meet. There is no reason why anyone should be unable to see me if they need to.

Other Resources

The class web page is maintained at http://avida.cs.wright.edu/courses/CEG481/. It will keep information, assignments, announcements, etc. There is also a class mailing list. Make sure your email address is registered with the registration system. Please check the web page and read your email. I will try to make any announcements in both places as well as in class, but you don't want to miss anything.

Class Policy

• Assignments will not be accepted late unless approved by the instructor.
• The solution for the assignment has to be turned in as executable and source code to receive full credit. The solution has to work on one of the computers in the Russ Engineering Center receive full credit.
• During the midterm, after completing the test, each student must sign his test solution in with the instructor.

Fine Print

Exams Exams will emphasize insight and problem solving ability rather than memorization. Exams will be closed notes, closed book, and no laptops or calculators.

Missed Exams Makeup exams will only be given for the gravest of reasons. If you must miss an exam due to extreme illness, etc., contact the instructor (email is fine) or leave a message with the Department of Computer Science and Engineering office (937-775-5131) before the exam. Be sure to leave both the reasons for missing the exam and how to reach you.

Add/drop Policy A copy of the add/drop policy is available at the main office or online.

Cheating Please do not. I am not obsessed with looking for cheating, but if I see something suspicious, I will refer it to the Office of Judicial Affairs. This is more work for me, and is embarrassing for everyone. Again, please don't; this has been a problem in the past. If the rules are unclear or you are unsure of how they apply, ask the instructor beforehand. The academic integrity policy as available online.

Feedback If you like, dislike, or don't understand something I'm doing with the course, please stop by my office hours, send me email, or paste together a note from newspaper clippings and drop it in my mailbox. I won't always change things, but I will always explain why I'm doing them the way I am.

Copyright All federal and state copyrights reserved for all original material presented in this course through any medium, including lecture or print. Individuals are prohibited from being paid for taking, selling, or otherwise transferring for value, personal class notes made during this course to any entity without the express written permission of the lecturer.

Last modified Monday August 27, 2012
http://avida.cs.wright.edu/courses/CEG481/Copy.html

Back to CEG481/CEG681 page