12-1997

Direct Demonstration of Retroviral Recombination in a Rhesus Monkey

Dawn P. Wooley
Wright State University - Main Campus, dawn.wooley@wright.edu

Randall A. Smith

Susan Czajak

Ronald C. Desrosiers

Follow this and additional works at: https://corescholar.libraries.wright.edu/ncbp

Part of the Medical Cell Biology Commons, Medical Neurobiology Commons, Medical Physiology Commons, Neurosciences Commons, Physiological Processes Commons, and the Virology Commons

Repository Citation
https://corescholar.libraries.wright.edu/ncbp/949

This Article is brought to you for free and open access by the Neuroscience, Cell Biology & Physiology at CORE Scholar. It has been accepted for inclusion in Neuroscience, Cell Biology & Physiology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
Direct Demonstration of Retroviral Recombination in a Rhesus Monkey

DAWN P. WOOLEY, RANDALL A. SMITH, SUSAN CZAJAK, and RONALD C. DESROSISI

Department of Microbiology and Immunology, Wright State University School of Medicine, Dayton, Ohio 45435, and New England Regional Primate Research Center, Division of Microbiology, Harvard Medical School, Southborough, Massachusetts 01772

Received 11 July 1997/Accepted 5 September 1997

Recombination may be an important mechanism for increasing variation in retroviral populations. Retroviral recombination has been demonstrated in tissue culture systems by artificially creating doubly infected cells. Evidence for retroviral recombination in vivo is indirect and is based principally on the identification of apparently mosaic human immunodeficiency virus type 1 genomes from phylogenetic analyses of viral sequences. We infected a rhesus monkey with two different molecularly cloned strains of simian immunodeficiency virus. One strain of virus had a deletion in vpx and vpr, and the other strain had a deletion in nef. Each strain on its own induced low virus loads and was nonpathogenic in rhesus monkeys. When injected simultaneously into separate legs of the same monkey, persistent high virus loads and declines in CD4 lymphocyte concentrations were observed. Analysis of proviral DNA isolated directly from peripheral blood mononuclear cells showed that full-length, nondeleted SIVmac239 predominated by 2 weeks after infection. These results provide direct experimental evidence for genetic recombination between two different retroviral strains in an infected host. The results illustrate the ease and rapidity with which recombination can occur in an infected animal and the selection that can occur for variants generated by genetic recombination.

Ten major subtypes of human immunodeficiency virus type 1 (HIV-1), represented by phylogenetic groups A through J, are currently recognized (21). Individual HIV-1 genomes that possess subgenomic regions that cluster with different subtypes have been discovered (3, 7, 9, 11, 19, 26). Such mosaic genomes have also been identified for HIV-2 and simian immunodeficiency virus (SIV) (10, 24, 25). It has been presumed that these mosaic structures arose through the process of genetic recombination (24, 25).

Recombination between two different strains of retrovirus can occur only when their RNA genomes are brought together into the same virus particle to create a heterozygous virion (16). Reverse transcription of heterozygous RNA genomes by a copy choice mechanism will produce genetic recombinants (16, 17, 28). A heterozygous virion is produced by the packaging of two different RNA molecules by a cell that is infected with two strains of virus. Although doubly infected cells have been generated artificially in cell culture systems, none have yet been identified in an infected host. Whether HIV-1 has ample opportunity for recombination in an infected host remains unclear. The uncertainty derives from questions regarding the numbers of cells harboring HIV-1 genetic information (1, 6, 23, 27), the timing and frequency of full expression of proviral genomes (22), the extent to which superinfection resistance will prevent a single infected cell from becoming infected with a second strain (2, 4, 13, 20), and the efficiency of the recombination process itself.

Evidence for the occurrence of recombination with HIV-1, HIV-2, and SIV is based on phylogenetic analyses of individual viral genomes (3, 7, 9–11, 19, 24–26) and thus is indirect in nature. It is not known whether mosaic viral genomes appeared as rare events in history and continue to be propagated in the population. Further, the time frame required to evolve into a different phylogenetic type is unknown. Retroviral recombination within an infected host has not to our knowledge ever been directly demonstrated. We thus designed an experiment that would readily detect SIV recombination in an infected monkey.

MATERIALS AND METHODS

Isolation of DNA from peripheral blood mononuclear cells (PBMC). For the isolation of DNA, cells were lysed in 0.6% sodium dodecyl sulfate and treated with 150 μg of proteinase K per ml at 56°C for 1.5 h. Three-tenths of a volume of saturated NaCl was added, and the solution was clarified by centrifugation. The NaCl step was repeated, and DNA was precipitated from the clarified supernatant with isopropanol. The DNA was washed with ethanol and air dried.

For direct sequencing of PCR-amplified DNA, three 100-μl aliquots of the DNA were amplified by PCR with an ABI 377 automated sequencer. The DNA was amplified using the following primers: 5'-TTTCAAGATTCACTGTCGCAAGGCAAGAGA-3' and 5'-GCCGAGTTTCTGACAGGCC-3'. The PCR products were purified using a CHROMA SPIN-400 column and then sequenced using standard protocols.

PCR. Double-nested PCR was performed with outer primers 582VPX and 9816FEN3U in the first round and inner primers 5864VPX and 9788FEN3U in the second round. Primer sequences were as follows: 582VPX, 5'-CAGGGAGAGAATTCCACCTGG-3'; 9816FEN3U, 5'-GAAGGCTCTTGCCGTTAGC3'-C3'; 5864VPX, 5'-TAGGAGAGGCCTTCGAATGGC-3'; 9788FEN3U, 5'-AACTCTTCTCTAGCAGGCC3'. Each round of PCR consisted of 28 cycles of amplification with 5 μl of reaction mixture transferred from the first-round to the second-round reaction. Two units of rTaq DNA polymerase XL was used for each reaction along with manufacturer's buffer (Perkin-Elmer, Foster City, Calif.). Other reaction components were 1.2 mM Mg(OAc)2, 200 μM (each) deoxynucleoside triphosphates, 30 pm (each) primer, and 1 μg of genomic DNA template in a total volume of 100 μl. Round 1 amplification conditions consisted of a hot start (94°C, 1 min; 70°C, 2 min, during which enzyme was added), a two-step cycling profile (94°C, 15 s; 70°C, 5 min; 28 cycles), and a final incubation (72°C, 10 min). Round 2 amplification conditions were similar to those for round 1 with the exception of using 68°C in the two-step cycle profile instead of 70°C. All reactions were performed on a GeneAmp PCR System 9600 thermal cycler (Perkin-Elmer).

Sequencing. For direct sequencing of PCR-amplified DNA, three 100-μl reaction mixtures were combined and concentrated to a volume of 40 to 75 μl. Primers from PCR were removed by purification on CHROMA SPIN-400 col...
TABLE 1. Virological data

<table>
<thead>
<tr>
<th>Week no.</th>
<th>Virus load</th>
<th>Antigenemia 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ng/ml)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>NT a</td>
<td><0.05</td>
</tr>
<tr>
<td>1</td>
<td>12,345</td>
<td><0.05</td>
</tr>
<tr>
<td>2</td>
<td>1,371</td>
<td>0.90</td>
</tr>
<tr>
<td>4</td>
<td>4,115</td>
<td><0.05</td>
</tr>
<tr>
<td>6</td>
<td>8,230</td>
<td><0.05</td>
</tr>
<tr>
<td>8</td>
<td>24,691</td>
<td>NT</td>
</tr>
<tr>
<td>12</td>
<td>12,345</td>
<td>NT</td>
</tr>
<tr>
<td>20</td>
<td>8,230</td>
<td>NT</td>
</tr>
<tr>
<td>27</td>
<td>8,230</td>
<td>NT</td>
</tr>
</tbody>
</table>

a Number of PBMC needed to isolate virus.

b SIV p27 antigen capture (Immunotech, West Brook, Maine).

NT, not tested.

RESULTS

Infection of the rhesus monkey. A rhesus monkey was infected with two attenuated strains of SIV, Δvpxvpr and Δnef. Both are deletion mutants derived from the molecularly cloned parental strain SIVmac239, which causes AIDS in rhesus monkeys (18). The vpxvpr genes and the nef gene are required for full pathogenicity in rhesus monkeys. In the absence of vpr and vpr, or in the absence of nef, virus loads are low and AIDS does not develop (12, 18). The level of attenuation resulting from the vpxvpr deletion is similar to or slightly greater than that resulting from the deletion of nef (12, 18). Peak levels of the numbers of infectious cells in PBMC in the weeks immediately following infection are 20- to 1,000-fold lower with these mutants than with the parental SIVmac239. The numbers of infectious cells that persist for prolonged periods are also at least 100- to 1,000-fold lower with these mutant viruses than with the parental SIVmac239 (12, 18).

The rhesus monkey was inoculated intravenously in one leg with Δvpxvpr virus containing 154 ng of p27 and in the other leg with Δnef virus, also containing 154 ng of p27. The same stocks of Δvpxvpr and Δnef viruses have been used previously to infect rhesus monkeys without any evidence of high virus loads, disease progression, or wild-type virus (8, 12, 18). Blood samples were obtained at various times after inoculation and used to monitor several parameters. A spike of p27 antigenemia corresponding to 0.9 ng/ml was detected in plasma 2 weeks after inoculation (Table 1). Such a spike has always been detected at week 2 with wild-type parental SIVmac239 but not with either of the deletion mutants used (12, 18). High cell-associated virus loads, measured as the frequency of infectious cells in PBMC (8, 12, 18), were induced and maintained in this animal, similar to the pattern obtained with the parental SIVmac239 (30) but dissimilar to the pattern obtained with either of the mutant viruses (8, 12, 18) (Table 1). Furthermore, the frequency of CD4+ cells in PBMC decreased from 51 and 52% at weeks 1 and 0, respectively, to 33% at week 12 and 27% at week 28 (data not shown).

Amplification of proviral DNA. The above results suggested that a recombination event had taken place between the two viruses to yield nondeleted, parental virus. To examine this possibility, total cell DNA was prepared from PBMC isolated at 2 and 6 weeks postinfection, and proviral sequences were amplified by PCR.

In order to provide precise size standards, CEMx174 cell cultures (15) were separately infected with the full-length parental virus SIVmac239, deletion mutant Δvpxvpr, and deletion mutant Δnef. Total cell DNA was prepared by the same DNA preparation method that was used for the PBMC. For negative controls, DNA was prepared from uninfected CEMx174 cells and from uninfected rhesus monkey PBMC. PCR primers that span a DNA sequence of approximately 4 kb that encompasses both the vpxvpr and nef deletions were designed. PCR amplification with DNA from PBMC samples from the infected monkey yielded a fragment of approximately 4 kb (Fig. 1). When subjected to the same double-nested PCR procedures in parallel in multiple independent experiments, both of the negative DNA samples were completely devoid of amplified bands, indicating the absence of PCR contamination. A representative CEMx174 DNA control is shown in Fig. 1.

Restriction enzyme analysis of amplified proviral DNA. The entire region spanning both the vpxvpr and nef deletions had to be amplified in one piece in order to detect the presence of recombinant sequences. Since the sizes of the vpxvpr and nef deletions were 265 and 182 bp, respectively, their presence could not be established unambiguously from the sizes of the amplified fragments in the gel shown in Fig. 1. The ~4-kb amplified fragments were therefore digested with restriction enzymes SphI and SstI and were further analyzed by agarose gel electrophoresis.

The SphI enzyme cut is diagnostic for the presence of the vpxvpr deletion. Restriction of the ~4-kb PCR product with SphI yielded the expected fragments of 3,386 and 628 hp for full-length SIVmac239 and fragments of 3,386 and 363 bp for the Δvpxvpr mutant; the presence of the vpxvpr deletion can thus be determined by the size of the smaller SphI fragment: 363 versus 628 bp. When amplified DNAs from the week 2 and week 6 PBMC samples were cut with SphI, only the 628- and 3,386-bp fragments were detected. The sizes of the SphI fragments were identical to those of the full-length, parental SIVmac239 and clearly distinct from those of the Δvpxvpr control (Fig. 2A).

Similarly, the SstI enzyme cut is diagnostic for the presence of the vpxvpr deletion. Restriction of the ~4-kb PCR product with SstI yielded the expected fragments of 3,386 and 154 bp for full-length SIVmac239 and fragments of 3,386 and 628 bp for the Δvpxvpr mutant; the presence of the vpxvpr deletion can thus be determined by the size of the smaller SstI fragment: 628 versus 363 bp. When amplified DNAs from the week 2 and week 6 PBMC samples were cut with SstI, only the 3,386-bp fragments were detected. The sizes of the SstI fragments were identical to those of the full-length, parental SIVmac239 and clearly distinct from those of the Δvpxvpr control (Fig. 2A).

FIG. 1. PCR amplification of SIV sequences. One microgram of total cell DNA was used for amplification by double-nested PCR. The products were separated by agarose gel electrophoresis and visualized by ethidium bromide staining. Lanes labeled week 2 and week 6 represent total cell DNA prepared from PBMC isolated at 2 and 6 weeks, respectively, after coinfection of the rhesus monkey. The remaining lanes show the products from total cell DNA prepared from CEMx174 cells infected with the following viruses: (i) SIVmac239, full-length parental virus; (ii) Δvpxvpr, attenuated SIVmac239 with deletions in vpr and vpr; (iii) Δnef, attenuated SIVmac239 with a deletion in nef; (iv) Δvpxvpr plus Δnef, a mixture of 0.5 μg each of total cell DNA prepared from cells infected separately with Δvpxvpr and Δnef viruses; (v) CEMx174, uninfected cells.
of the nef deletion. Restriction of the –4-kb PCR product with SspI yielded the expected fragments of 3,408 and 606 bp for the full-length SIVmac239 and fragments of 3,408 and 424 bp for the nef mutant; the presence of the nef deletion can thus be determined by the size of the smaller SspI fragment: 424 versus 606 bp. The sizes of the SspI fragments for weeks 2 and 6 were identical to those of the full-length, parental SIVmac239 and clearly distinct from those of the Δ nef control (Fig. 2B). These results demonstrate that only full-length, recombinant SIVmac239 was detected at weeks 2 and 6 after coinfection of the rhesus monkey.

Controls for PCR recombination. In order to rule out the possibility that the observed results were due to selective PCR recombination, 0.5 μg of total cell DNA prepared from cells infected individually with the Δvpxvpr and Δ nef mutants was mixed and amplified alongside the other samples in double-nested PCR (Fig. 1). Restriction enzyme analysis of the –4-kb PCR product with SphI and SspI showed a mixture of the two deletion mutants (Fig. 2; representative of six independent experiments). These results indicate that the full-length, recombinant SIVmac239 observed at weeks 2 and 6 in the coinfected rhesus monkey was not the result of PCR recombination.

Sequencing of recombinant proviruses. The PCR-amplified DNAs from PBMC taken at weeks 2 and 6 were directly sequenced. Primers were located upstream and downstream of the regions corresponding to the vpxvpr and nef deletions. The sequence of the PCR-amplified DNA matched exactly that of the starting strains were significantly impaired in their ability to replicate in monkeys.

Recent studies of HIV-1-infected individuals reveal that the long asymptomatic phase of infection is not a latent period but is a time of high activity for the virus (14, 29). It has been estimated that the minimum daily production of HIV-1 particles in infected individuals is on the order of 10^10 virions per day (14). It has also been estimated that HIV-1 replicates at a rate of at least 300 cycles per year, resulting in an estimated 3,000 generations during the average 10-year period of infection (5). Despite the availability of this highly quantitative information on viral dynamics, assessment of the opportunity for HIV-1 recombination in an infected host is unfortunately not possible. Uncertainty over the numbers of cells replicating HIV-1 genetic information at any one time (1, 6, 23, 27) and the efficiency of superinfection resistance prevent any such calculation of the likelihood of recombination events.

The rhesus monkey used for this study can be estimated to contain approximately 10^11 total body lymphocytes. The numerical odds of obtaining 10 doubly infected cells at peak virus load would require only 1 in 10^8 cells replicating each deletion mutant virus. This theoretical calculation does not take into account the unknown contribution of superinfection resistance or the possibility of localized replication in discrete areas of lymphoid tissue. Nonetheless, our results indicate that there is ample opportunity for genetic recombination even with these attenuated mutants. The opportunity for recombination with wild-type viruses, which replicate to much higher levels than the strains used in our study, is expected to be considerably greater. Recombinants with a selective advantage, such as that described in the results reported here, could significantly impact the progression of events in vivo.

Our studies with SIV demonstrate not only that AIDS virus recombination can occur readily in an individual but also that recombinants can be selected rapidly by biological forces. Two weakly replicating SIVs recombined in a coinfected rhesus monkey to yield a fully replication-competent virus with pathogenic potential. Recombination must be viewed as a viable mechanism for increasing AIDS virus variation in infected individuals.

DISCUSSION

The studies described in this report provide direct experimental evidence for genetic recombination between two SIV strains in an infected animal. A rhesus monkey was inoculated with two different strains of SIV, and recombinant virus was found to predominate by 2 weeks postinfection. Recombinant virus was strongly selected in these experiments because both of the starting strains were significantly impaired in their ability to replicate in monkeys.

ACKNOWLEDGMENTS

We thank Mindy Zhang for the DNA preparations, Prahhat Sehgal for help with the animal, and Dong-Ling Xia and Allan McPhee for technical assistance.

This work was supported by Public Health Service grants CA72239, AI25328, AI35365, AI38559, and RR00168 and by funds from Wright State University and from a Research Challenge Grant awarded by the State of Ohio.

REFERENCES