Spring 2005

CEG 476/676-01: Computer Graphics I

Arthur A. Goshtasby

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation

https://corescholar.libraries.wright.edu/cecs_syllabi/1012

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
Course Syllabus

CEG-476/676 Computer Graphics I Spring '05

No. Units: 4, *Lectures:* 2:45 - 4:00, M, W, 150 Russ Ctr.
Instructor: A. Goshtasby, *Office Location:* 341 RC, *Phone:* X5170
Email: agoshtas@cs.wright.edu, *Office Hours:* M,W 1-2, Tu 2-3, or by appointment.

Prerequisite: CS400, MTH253 or MTH255

Textbook:
Computer Graphics with OpenGL, 3rd Edition
Donald Hearn and M. Pauline Baker
Prentice Hall, 2004

Reference Manual:
M. Woo, et al.
Addison-Wesley Developers Press, 2004

Purpose of Course:
TO learn techniques for generating 2-D and 3-D models and interacting with the models.

Contents:
1. Introductions
2. Geometric Primitives
3. Attributes of Geometric Primitives
4. Antialiasing
5. Homogeneous coordinate system
6. Geometric transformation
7. Structures and hierarchical modeling
8. 2-D and 3-D viewing transformations
9. Input devices and interactive techniques
10. Visible surface detection methods

Learning Goals:
The objective of this course is to learn the fundamentals of model representation, algorithms that generate realistic 2-D and 3-D models, and practice some of the concepts through program implementation.

Assignments:
There will be three programming assignments and a final project. An assignment would typically require 15 to 20 hours of work and the final project would require from 30 to 40 hours of work.

Grading:
Programming Assignments will worth 40%, Midterm Exam will worth 25%, and Final Project will worth 30% of the total grade. Class participation will count the remaining 5%. Grades will be assigned as follows. A: [92 .. 100], B: [86 .. 91], C: [76 .. 85], D: [60 .. 75], E: [0 .. 59].
Policies:
Materials covered in class will closely follow the textbook. Late assignment programs will be accepted but with one point deduction per a late day.

Calendar:
Assignments 1, 2, and 3 will be handed out on 4/6, 4/20, and 5/11, and will be due 4/18, 5/2, and 5/23, respectively. The assignments are intended to practice some of the materials learnt in class. The assignments can be completed individually or with a partner. Final project will be handed out on 5/23 and will be due exam day (6/6).

Midterm exam will be on 5/9, 2:45 - 4:00 PM.