Spring 2005

CEG 476/676-01: Computer Graphics I

Arthur A. Goshtasby
Wright State University - Main Campus, arthur.goshtasby@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/cecs_syllabi
Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
http://corescholar.libraries.wright.edu/cecs_syllabi/1012

This Syllabus is brought to you for free and open access by the College of Engineering and Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Course Syllabus

CEG-476/676 Computer Graphics I Spring '05

No. Units: 4, Lectures: 2:45 - 4:00, M, W, 150 Russ Ctr.
Instructor: A. Goshtasby, Office Location: 341 RC, Phone: X5170
Email: agoshtas@cs.wright.edu, Office Hours: M,W 1-2, Tu 2-3, or by appointment.

Prerequisite: CS400, MTH253 or MTH255

Textbook:
Computer Graphics with Open GL, 3rd Edition
Donald Hearn and M. Pauline Baker
Prentice Hall, 2004

Reference Manual:
M. Woo, et al.
Addison-Wesley Developers Press, 2004

Purpose of Course:
TO learn techniques for generating 2-D and 3-D models and interacting with the models.

Contents:
1. Introductions
2. Geometric Primitives
3. Attributes of Geometric Primitives
4. Antialiasing
5. Homogeneous coordinate system
6. Geometric transformation
7. Structures and hierarchical modeling
8. 2-D and 3-D viewing transformations
9. Input devices and interactive techniques
10. Visible surface detection methods

Learning Goals:
The objective of this course is to learn the fundamentals of model representation, algorithms that generate realistic 2-D and 3-D models, and practice some of the concepts through program implementation.

Assignments:
There will be three programming assignments and a final project. An assignment would typically require 15 to 20 hours of work and the final project would require from 30 to 40 hours of work.

Grading:
Programming Assignments will worth 40%, Midterm Exam will worth 25%, and Final Project will worth 30% of the total grade. Class participation will count the remaining 5%. Grades will be assigned as follows. A: [92 .. 100], B: [86 .. 91], C: [76 .. 85], D: [60 .. 75], E: [0 .. 59].
Policies:
Materials covered in class will closely follow the textbook. Late assignment programs will be accepted but with one point deduction per a late day.

Calendar:
Assignments 1, 2, and 3 will be handed out on 4/6, 4/20, and 5/11, and will be due 4/18, 5/2, and 5/23, respectively. The assignments are intended to practice some of the materials learnt in class. The assignments can be completed individually or with a partner. Final project will be handed out on 5/23 and will be due exam day (6/6).

Midterm exam will be on 5/9, 2:45 - 4:00 PM.