Spring 2005

CEG 724-01: Computer Vision I

Maite Trujillo

Wright State University - Main Campus

Follow this and additional works at: http://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation

http://corescholar.libraries.wright.edu/cecs_syllabi/1007

This Syllabus is brought to you for free and open access by the College of Engineering and Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
CEG 720 Computer Architecture I

Spring Quarter, 2005

Catalog Data: Review of sequential computer architecture and study of parallel
computers. Topics include memory hierarchy, reduced instruction set computer,
pipeline processing, multiprocessing, various parallel computers, interconnection
networks, and fault-tolerant computing. 3 hours lecture and 2 hours lab.

Prerequisite: CEG633, or CEG520 and CEG611

Prerequisite Topics: Process management, CPU scheduling, Memory management,
Cache management, Disk management. If not familiar with these topics, take
CEG433/633 (Operating Systems) first.

Instructor: Dr. Soon M. Chung
 403 Russ Engineering Center (775-5119)
schung@cs.wright.edu, http://www.cs.wright.edu/~schung

Class: Tu. Th. 4:10-5:25 pm at 303 Oelman

Office hour: M. 4:30-5:30 pm, Tu. 2:45-3:45 pm at 403 Russ, or by appointment.
*use e-mail for short questions.

Text Book: K. Hwang, Advanced Computer Architecture: Parallelism,

References:
J. L. Hennessy and D. A. Patterson, Computer Architecture, Morgan Kaufmann.

Topics: Parallel Computer Models (Chapter 1)
 Processors and Memory Hierarchy (Chapter 4)
 Bus, Cache, and Shared Memory (Chapter 5, Section 8.1.2)
 Interconnection Networks (Section 2.4)
 Pipeline and Superscalar Techniques (Chapter 6)
 Multivector and SIMD Computers (Sections 8.1 and 8.4)
 Multiprocessors and Multicomputers (Section 7.1)

Grading: A:[85,100], B:[75,85), C:[65,75), D:[55,65), F:[0,55)
 Midterm 30% (5/5, Th.)
 Final 40% (6/7, Tu. 5:45-7:45 pm)
 Paper-review project 30% { papers referenced 7%, organization 6%,
 written presentation 8%, discussion 9% }