Activation of the Basolateral Membrane Cl- Conductance Essential for Electrogenic K+ Secretion Suppresses Electrogenic Cl- Secretion

Quanhua He

Susan T. Halm
Wright State University - Main Campus, susan.halm@wright.edu

Jin Zhang
Wright State University - Main Campus, jin.zhang@wright.edu

Dan R. Halm
Wright State University - Main Campus, dan.halm@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/ncbp

Part of the Medical Cell Biology Commons, Medical Neurobiology Commons, Medical Physiology Commons, Neurosciences Commons, and the Physiological Processes Commons

Repository Citation
Activation of the basolateral membrane Cl\(^-\) conductance essential for electrogenic K\(^+\) secretion suppresses electrogenic Cl\(^-\) secretion

Quanhua He, Susan T. Halm, Jin Zhang, and Dan R. Halm
Department of Neuroscience, Cell Biology & Physiology Wright State University Boonshoft School of Medicine 3640 Colonel Glenn Hwy. Dayton OH 45435

Abstract
Adrenaline activates transient Cl\(^-\)-secretion and sustained K\(^+\)-secretion across isolated distal colonic mucosa of guinea pig. The Ca\(^{++}\)-activated Cl\(^-\) channel inhibitor CaCCinh-A01 [30\(\mu\)M] significantly reduced electrogenic K\(^+\)-secretion, detected as short-circuit current (I\(_{sc}\)). This inhibition supported the cell model for K\(^+\)-secretion in which basolateral membrane Cl\(^-\) channels provide an exit pathway for Cl\(^-\) entering the cell via Na\(^+\)/K\(^+\)/2Cl\(^-\)-cotransporters. CaCCinh-A01 inhibited both I\(_{sc}\) and transepithelial conductance in a concentration dependent manner, IC\(_{50}\) = 6.3\(\mu\)M. GlyH-101, another Cl\(^-\) channel inhibitor, also reduced sustained adrenaline-activated I\(_{sc}\) (IC\(_{50}\) = 9.4\(\mu\)M). Adrenaline activated whole-cell Cl\(^-\) current in isolated intact colonic crypts, confirmed by ion substitution. This adrenaline-activated whole-cell Cl\(^-\) current also was inhibited by CaCCinh-A01 or GlyH-101. In contrast to K\(^+\)-secretion, CaCCinh-A01 augmented the electrogenic Cl\(^-\)-secretion activated by adrenaline as well as that activated by PGE\(_2\). Synergistic Cl\(^-\)-secretion activated by cholinergic/PGE\(_2\) stimulation was insensitive to CaCCinh-A01. Colonic expression of the Ca\(^{++}\)-activated Cl\(^-\) channel protein Tmem16A was supported by RT-PCR detection of Tmem16A-mRNA, by immuno-blot with a Tmem16A-antibody, and by immuno-fluorescence detection in lateral membranes of epithelial cells. Alternative splices of Tmem16A were detected for exons that are involved in channel activation. Inhibition of K\(^+\)-secretion and augmentation of Cl\(^-\)-secretion by CaCCinh-A01 supports a common colonic cell model for these two ion secretory processes, such that activation of basolateral membrane Cl\(^-\) channels contributes to the production of electrogenic K\(^+\)-secretion and limits the rate of Cl\(^-\)-secretion. Maximal physiological Cl\(^-\)-secretion occurs only for synergistic activation mechanisms that close these basolateral membrane Cl\(^-\) channels.

Keywords
adrenaline; CaCCinh-A01; Tmem16A(Ano1)

Introduction
Transepithelial fluid secretion contributes to many physiological processes from digestion to vision (Barrett & Keely, 2006; Planells-Cases & Jentsch, 2009). The composition of the resulting fluid is determined by the very solutes secreted to produce the driving force for water flow. Commonly, electrogenic Cl\(^-\)-secretion provides the primary cellular event in transepithelial flow such that the fluid is high in NaCl. Activation of Cl\(^-\)-secretion in each
organ system occurs via a number of transmitter substances and hormones acting as secretagogues. In the colonic epithelium, many Cl\(^-\) secretagogues also activate electrogenic K\(^+\)-secretion such that the luminal fluid has a K\(^+\) concentration higher than plasma levels (Halm & Frizzell, 1986; Halm & Rick, 1992; Rechkemmer et al., 1996).

The cellular mechanism producing electrogenic K\(^+\)-secretion resembles the standard scheme for Cl\(^-\)-secretion with the addition of apical membrane K\(^+\) channels (Halm & Frizzell, 1986; Field, 2003). The rate of K\(^+\)-secretion depends in part on the relative K\(^+\) conductance of the apical membrane compared with the basolateral membrane. In the limiting case with only apical K\(^+\) channels open (all basolateral K\(^+\) channels closed), the rate of K\(^+\)-secretion would approach that of Cl\(^-\)-secretion. Notably, adrenergic stimulation in the distal colon activates transient Cl\(^-\)-secretion and sustained K\(^+\)-secretion (Zhang et al., 2009b). During the sustained phase of adrenergic activation, K\(^+\)-secretion continues in the absence of Cl\(^-\)-secretion likely because of Cl\(^-\) exit across the basolateral membrane. The route of this Cl\(^-\) flow appears to occur via Cl\(^-\) channels (Halm, 2004). Opening these basolateral Cl\(^-\) channels provides an exit path for the Cl\(^-\) entering via Na\(^+\)-K\(^+\)-2Cl\(^-\)-cotransporters so that a driving force for K\(^+\)-secretion is maintained without cell swelling. Just as opening basolateral K\(^+\) channels reduces K\(^+\)-secretion, opening these basolateral Cl\(^-\) channels could reduce the rate of Cl\(^-\)-secretion.

The identity of the basolateral membrane Cl\(^-\) channels activated during electrogenic K\(^+\)-secretion remains unknown. Adrenaline activates single channel currents indicating the presence of several biophysically distinct Cl\(^-\) conductance types (Li et al., 2003). Candidates for the channel proteins producing these currents include cAMP-activated Cl\(^-\) channels (Cl\(_{\text{cAMP}}\)) such as CFTR, Ca\(^++\)-activated Cl\(^-\) channels (Cl\(_{\text{Ca}}\)) such as Tmem16A or bestrophin, as well as the CLC family (Eggermont, 2004; Hartzell et al., 2009; Planells-Cases & Jentsch, 2009; Duran et al., 2010). Small molecule inhibitors of these channels aid in the identification of which types are required for a particular physiological response (Schultz et al., 1999; Verkman & Galietta, 2009). Although many of these inhibitors lack potency and specificity, several have been developed recently using high-throughput-screening including inhibitors for CFTR and Cl\(_{\text{Ca}}\). The intent of the present study was to determine the sensitivity of electrogenic K\(^+\)-secretion and Cl\(^-\)-secretion to Cl\(_{\text{Ca}}\) inhibitors as a means to assess the involvement of Cl\(^-\) channels in secretory activation.

Methods

Male guinea pigs (500–800g body weight, Hartley strain; Hilltop Lab Animals, Scottdale PA) received standard chow and water *ad libitum*. Guinea pigs were euthanized with an animal decapitator (Harvard Apparatus, Holliston MA) in accordance with a protocol approved by the Wright State University Laboratory Animal Care and Use Committee. Colonic mucosa was isolated as described previously (Zhang et al., 2009a), and used for measurement of electrical parameters, protein detection by immuno-blot, immunofluorescence, and mRNA expression by RT-PCR.

Transepithelial current measurement

Isolated mucosal sheets were used for measurement of transepithelial current and conductance (Zhang et al., 2009a). Mucosae were mounted in Ussing chambers (0.64cm\(^2\) aperture), supported on the serosal face by nuclo pore filters (~10\(\mu\)m thick, 5\(\mu\)m pore diameter; Whatman, Clifton NJ). Bathing solutions (10mL) were circulated by gas-lift through water-jacketed reservoirs (38°C). Standard Ringer’s solution contained [in mM]: 145 Na\(^+\), 5.0 K\(^+\), 2.0 Ca\(^{2+}\), 1.2 Mg\(^{2+}\), 125 Cl\(^-\), 25 HCO\(_3^-\), 4.0 H\(_3\)PO\(_4^-\), 10 D-glucose, continually gassed with 95% O\(_2\) and 5% CO\(_2\) maintaining pH at 7.4. Automatic voltage clamps (Physiologic Instruments, San Diego CA) permitted measurement of short-circuit...
current \((I_{sc}) \) and calculation of transepithelial conductance \((G_t) \) from current responses to voltage pulses imposed across the mucosa \((±5\text{mV, 3sec duration, 60sec intervals}) \). \(I_{sc} \) was referred to as positive for cation flow across the epithelium from mucosal to serosal side.

Responses to secretagogues and inhibitors were obtained from a basal condition produced by suppressing neural and paracrine activators persisting in the isolated mucosa (Zhang et al., 2009b). Briefly, 3 successive replacements of solutions diluted compounds released from the mucosa. The COx-1 (prostaglandin-endoperoxide synthase-1) inhibitor SC-560 \([1\mu M]\) and COx-2 (PES-2) inhibitor CAY-10404 \([1\mu M]\) suppressed prostanoid production; the Y2-NpR antagonist BIIE-0246 \((1\mu M, \text{serosal})\) inhibited PY/YNY action; amiloride \((10\mu M, \text{mucosal})\) inhibited electrogenic Na\(^{+}\) absorption. Sequential addition of secretagogues (adrenaline, prostaglandin-E\(_2\), carbachol) stimulated a range of secretory responses including the modulatory mode consisting of electrogenic K\(^{+}\)-secretion alone and flushing mode exhibiting high rates of electrogenic Cl\(^{-}\)-secretion together with K\(^{+}\)-secretion. Combined stimulation with CCh and PGE\(_2\) produces a super-additive synergistic mode of secretion.

Patch-clamp electrical recording

Intact colonic crypts were isolated from mucosal sheets (Li et al., 2003) that were glued to stainless steel holders \((0.12\text{mm thick, opening 1cm wide and 4cm long})\) with cyanoacrylate. These mucosae were incubated in HEPES-buffered solution \((38°C)\), with indomethacin \([1\mu M]\) to reduce spontaneous fluid and mucus secretion. HEPES-buffered Ringer’s solution contained \([\text{in mM}]\): 142 Na\(^{+}\), 5 K\(^{+}\), 2 Ca\(^{2+}\), 1.2 Mg\(^{2+}\), 143 Cl\(^{-}\), 143 Cl\(^{-}\), 5 K\(^{+}\) HEPES, 10 D-glucose, continually aerated with 100% O\(_2\). Solutions for separating crypt epithelium from connective tissue contained \([\text{in mM}]\): 192 Na\(^{+}\), 5 K\(^{+}\), 97 Cl\(^{-}\), 4 H\(_{3}\) PO\(_4\)X\(^{-}\), 10 HEPES, 10 D-glucose and either 30mM citrate or 30mM EDTA. Isolation solution containing EDTA also had 0.1% bovine serum albumin. Mucosae were incubated consecutively in 30mM citrate Ringer \((15–30\text{min})\) and 30mM EDTA Ringer \((15–20\text{min})\). Agitation of holders released crypts into HEPES-buffered Ringer with indomethacin and dithiothreitol \([1\text{mM}]\). Isolated crypts were stored in ice-cold Ringer until use and were suitable for patch-clamp experiments up to ~30h.

Isolated crypts were transferred onto a poly-lysine-coated plastic coverslip in the electrical recording chamber (Warner Instruments, Hamden CT) mounted on the stage of an inverted microscope (Diaphot; Nikon, Melville NY). Pipets with whole-cell solution had resistances of \(5–10\text{M}Ω\). A pipet-holder with a chloridized silver wire (Warner Instruments, Hamden CT) connected to the head-stage of an EPC-9 patch-clamp amplifier (HEKA, Bellmore NY). The reference electrode was a Ag/AgCl pellet connected to the bath through a 150mM-KCl-agar bridge. Seals were made on central tubular portions of crypts bathed in HEPES-buffered Ringer’s solution \((\text{room temperature})\), generally \(2–10\text{G}Ω\) (Li et al., 2003). Standard whole-cell recording configuration was obtained and currents recorded in response to voltage ramps \((200\text{msec})\) from \(-100\text{mV} \text{ to } +90\text{mV}\) applied every \(2\text{sec}\) holding at \(-40\text{mV}\) (Liu & Farley, 2007). Standard pipet solution contained \([\text{in mM}]\): 10 Na\(^{+}\), 150 K\(^{+}\), 51 Cl\(^{-}\), 100 gluconate\(^{-}\), 5 HEPES, 0.5 Ca\(^{2+}\), 1.0 EGTA. Calculated free Ca\(^{2+}\) was \(-0.4\mu M\). K-free pipet solution contained \([\text{in mM}]\): 8 Na\(^{+}\), 150 Cs\(^{+}\), 151 Cl\(^{-}\), 5 HEPES, 0.5 Ca\(^{2+}\), 1.0 EGTA. Cl-free pipet solution contained \([\text{in mM}]\): 10 Na\(^{+}\), 150 K\(^{+}\), 151 gluconate\(^{-}\), 5 HEPES, 0.5 Ca\(^{2+}\), 1.0 EGTA. Low Cl\(^{-}\) bath solution contained \([\text{in mM}]\): 142 Na\(^{+}\), 5 K\(^{+}\), 8 Ca\(^{2+}\), 1.2 Mg\(^{2+}\), 6 Cl\(^{-}\), 137 gluconate\(^{-}\), 4 H\(_{3}\) PO\(_4\)X\(^{-}\), 10 HEPES, 10 D-glucose.

Inhibitors of Cl\(^{-}\) channels were generously provided by R.J. Bridges, Rosalind Franklin University, North Chicago IL (GlyH-101, CFTRinh-172) and A.S. Verkman, University of California, San Francisco CA (CaCCinh-A01). CAY-10404, SC-560, and prostaglandin-E\(_2\) were obtained from Cayman Chemical (Ann Arbor MI); BIIE-0246, CFTRinh-172,
ICI-118551, 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) from Tocris Bioscience (Ellisville MO); adrenaline from Hospira (Lake Forest IL). All other chemicals were obtained from Sigma Chemical (St. Louis MO). Drugs were added in small volumes from concentrated stock solutions.

Detection of mRNA and proteins

Total RNA was extracted by RNeasy-Mini-Kit (Qiagen, Valencia CA) from isolated mucosa and EDTA-released epithelial cells prepared as for patch-clamp recording. Briefly (Zhang et al., 2009a), after reverse transcription of mRNA, cDNA was amplified by PCR: initial denaturing 95°C (10min), 40 cycles denaturation 92°C (1 min), annealing 64°C (1 min), extension 72°C (8min). Primers specific for Cl\textsubscript{Ca}-Tmem16A were based on previous design (Ferrera et al., 2009; O'Driscoll et al., 2010) and alignment of nucleotide sequences for human, mouse, and rat (GenBank accession NM_018043, NM_178642, NM_001107564). Primers for the exon6B-segment were \textit{forward} 5'-cag-aag-atc-aca-gac-ccc-atc-c-3' and \textit{reverse} 5'-cag-gga-tga-gca-tct-ggg-tgt-3', exon15-segment \textit{forward} 5'-aag-aag-cca-gga-gg-tca-tg-ttg-ag-3' and \textit{reverse} 5'-caac-act-cca-gca-gga-gg-cc-3', and exon6/exon16-segment \textit{forward} 5'-gaa-caa-cgt-gca-cca-agg-cca-agt-a-3' and \textit{reverse} 5'-tgg-tga-aat-agg-ctg-gga-atc-ggt-c-3'.

Proteins were isolated from colonic epithelial cells. Briefly (Zhang et al., 2009a), after disruption by sonication in a buffered solution containing protease inhibitors, samples were centrifuged to obtain a membrane sample. Following SDS-PAGE and transfer to polyvinylidene difluoride membranes, incubation with Cl\textsubscript{Ca}-Tmem16A specific primary antibody (1:500, rabbit monoclonal SP31 of human \textit{Ano1}; ab64085, Abcam Inc, Cambridge MA), and then with horseradish peroxidase-conjugated secondary antibody (Jackson ImmunoResearch Laboratories, West Grove PA) allowed detection of protein.

Immuno-fluorescence localization in colonic mucosa followed previous methods (Zhang et al., 2009a). Briefly, isolated mucosal sheets were immersed in fixation solutions, dehydrated, sectioned, mounted on gelatin-coated slides, permeabilized/blotted, and then incubated for 24 h (4°C) with primary antibody for Cl\textsubscript{Ca}-Tmem16A (6.7ng/μL, rabbit polyclonal of human \textit{Ano1}; ab53212, Abcam Inc, Cambridge MA). A donkey-anti-rabbit IgG antibody, conjugated to AlexaFluor®488 (Invitrogen, Carlsbad CA), was used to detect immuno-reactivity (4ng/μL, 2hr, room temp). Sections were washed, mounted in Vectashield (Vector Labs, Burlingame CA), and fluorescence visualized with an Olympus BX60 epifluorescence microscope.

Data Analysis

Responses of I\textsubscript{sc} and G\textsubscript{t} to secretagogues and antagonists were obtained from adjacent mucosae in each colon to permit direct comparisons. I\textsubscript{sc} recordings were digitized at 10sec intervals to examine secretory time courses. Concentration dependences were fit by Henri-Michaelis-Menten binding curves using non-linear least-squares procedures. Patch-clamp data were analyzed using FitMaster software (HEKA, Bellmore NY). Band intensities were analyzed using ImageJ software. Results were reported as mean and standard error of the mean (sem) with the number of animals (n) indicated. Statistical comparisons were made using a two-tailed Student's t-test for paired responses (experimental – control), with significant difference accepted at P<0.05.

Results

Action of Cl- channel inhibitors on β-adrenergic activated ion secretion

Adrenaline (adr) stimulates a transient positive I\textsubscript{sc} component (\textit{adr}I\textsubscript{sc}) associated with Cl--secretion and a sustained negative \textit{adr}I\textsubscript{sc} associated with K+-secretion (Zhang et al., 2009b).
The Ca^{++}-activated Cl^{-} channel (Cl_{Ca}^{ad}) inhibitor CaCCinh-A01 used at a concentration ~3-fold higher than the reported IC_{50} (De La Fuente et al., 2008) rapidly decreased the basal negative I_{sc} toward zero consistent with inhibiting K^{+}-secretion (Fig 1A). Subsequent adrenaline activation in the presence of CaCCinh-A01 produced transient positive I_{sc} without sustained negative I_{sc}. These results conformed to the cell model for K^{+}-secretion requiring basolateral membrane Cl^{-} channels (Halm, 2004), but contradicted the concept that Cl_{Ca} in the apical membrane supports Cl^{-}-secretion (Eggermont, 2004; Hartzell et al., 2009). The presence of the cAMP-activated Cl^{-} channel CFTR (Cl_{CA-CFTR}) in the apical membrane also often contributes to Cl^{-}-secretion (Barrett & Keely, 2006; Duran et al., 2010), such that Cl_{CA-CFTR} and Cl_{Ca} together would determine the secretory rate. The peak of the adrenaline activated Cl^{-} secretory transient was indistinguishable in the presence or absence of the Cl_{CA-CFTR} inhibitor CFTRinh-172 [30μM] (ΔI_{sc} \text{adr}=+13.8 \pm 14.8 μA/cm², n=4, P=0.42). This result with CFTRinh-172 at a concentration ~30-fold higher than the IC_{50} (Verkman & Galietta, 2009) indicated an insensitivity of the apical membrane Cl^{-} channels supporting Cl^{-}-secretion, either due to a specific insensitivity of guinea pig colonic CFTR or the lack of CFTR involvement in this response. Including both CaCCinh-A01 and CFTRinh-172 also produced a secretory transient indistinguishable from control activation (data not shown). The sustained negative I_{sc} associated with K^{+}-secretion was indistinguishable in the presence or absence of CFTRinh-172 [30μM] (ΔI_{sc} \text{adr}=+7.1 \pm 3.4 μA/cm², n=4, P=0.13), further supporting the selective action of CaCCinh-A01.

β-adrenergic activation of Cl^{-}-secretion requires β2-adrenergic receptors (β2-AdR), such that the selective β2-AdR antagonist ICI-118551 eliminates positive transient I_{sc} leaving unaltered the sustained I_{sc} associated with K^{+}-secretion (Halm et al., 2010). In the presence of ICI-118551, CaCCinh-A01 addition inhibited sustained K^{+} secretory I_{sc} (Fig 1B). The concentration dependence provided an IC_{50} of 6.3μM for CaCCinh-A01 inhibition of I_{sc} (Fig 1C); G_{i} also decreased in a concentration dependent manner (data not shown). The Cl_{CA-CFTR} inhibitor GlyH-101 (Verkman & Galietta, 2009) acted with similar efficacy. NPPB also inhibits some Cl_{Ca} (Eggermont, 2004) and reduced I_{sc}; but at concentrations >10μM, large increases in G_{i} occurred suggesting an additional action compromising epithelial integrity. Niflumate, another inhibitor of Cl_{Ca}, reduced I_{sc} (IC_{50} ~50μM) with the caveat that concentrations ≥30μM compromised G_{i} as with NPPB (data not shown, n=3). The channel blocker DPC (diphenylamine-2-carboxylate; Schultz et al., 1999) inhibited less strongly (IC_{50} ~150μM, data not shown, n=3). The lack of inhibition by CFTRinh-172 on negative I_{sc} supported an IC_{50} of >500μM. This pattern of inhibitor sensitivity observed for K^{+} secretory I_{sc} conformed to that reported for Cl_{Ca} (Eggermont, 2004; Hartzell et al., 2009), supporting an involvement of Cl_{Ca} as part of the basolateral Cl^{-} conductance required for electrogenic K^{+}-secretion.

Adrenaline activated whole-cell currents

Basal currents from cells of intact crypts had linear current-voltage relations, recorded using a standard whole-cell configuration (Fig 2A). Adrenaline addition to the bathing solution increased currents with a shift of the reversal potential to more negative values consistent with stimulation of K^{+} conductance. Adrenaline stimulation of Cl^{-} currents (I_{Cl}) was apparent at E_{K}, since K^{+} currents would be zero. Using a CsCl pipet solution to eliminate K^{+} current, whole-cell recordings produced currents reversing near zero in basal and adrenaline stimulated conditions consistent with Cl^{-} currents (Fig 2B). Addition of CaCCinh-A01 to the bath reduced I_{Cl} to basal levels. This CaCCinh-A01 sensitive current had a nearly linear current-voltage relation. Activation of I_{Cl} by adrenaline was rapid after a variable delay of 10–90sec, which likely resulted from mixing in the chamber (Fig 2C), and I_{Cl} remained stable for over 10min. The ionic identity of I_{Cl} was supported by its continued presence during K^{+} replacement by Cs^{+} and its absence during Cl^{-} replacement by gluconate^{-}. The
Cl⁻ channel inhibitors CaCCinh-A01, GlyH-101, and NPPB rapidly decreased this inward current during adrenaline activation (Fig 2D) consistent with blockade of \(\text{at}_{\text{I}_{\text{Cl}}} \).

Action of Cl⁻ channel inhibitors on Cl⁻-secretion

Insensitivity of β-adrenergic activated Cl⁻-secretion to the Cl⁻ channel blocker CaCCinh-A01 (Fig 1A) supported a secretory model involving distinct Cl⁻ channel types in apical and basolateral membranes. Inhibiting basolateral membrane Cl⁻ channels in a Cl⁻ secretory cell would have immediate consequences. Since the component of \(\text{at}_{\text{I}_{\text{Cl}}} \) sensitive to β2-AdrR antagonism is Cl⁻-secretion (Halm et al., 2010), comparing ICI-118551-sensitive \(\text{at}_{\text{I}_{\text{Cl}}} \) for experimental and control mucosae indicated that CaCCinh-A01 augmented Cl⁻-secretion at all time points (Fig 3A). This result supported a secretory model in which basolateral membrane Cl⁻ channels contribute to the control of Cl⁻ secretory rate by redirecting a portion of intracellular Cl⁻ back into the interstitial space. CaCCinh-A01 also augmented PGE₂ stimulation of Cl⁻-secretion (Fig 3B) indicating that basolateral membrane Cl⁻ channels were active during stimulation with other Cl⁻-secretagogues. Synergistic activation of Cl⁻-secretion with combined PGE₂ and cholinergic stimulation was augmented by CaCCinh-A01 only at the 1ˢᵗ peak of \(\text{I}_{\text{sc}} \) but not at the 2ⁿᵈ peak or during the plateau (Fig 3C). Thus, the mechanism of synergistic activation likely included inhibition of basolateral membrane Cl⁻ channels, which would maximize conductive exit of Cl⁻ across the apical membrane.

Other Cl⁻ channel inhibitors tested also exhibited some ability to augment Cl⁻-secretion. GlyH-101 [10μM] significantly enhanced the 1ˢᵗ and 2ⁿᵈ peaks of the positive \(\text{at}_{\text{I}_{\text{sc}}} \) similar to CaCCinh-A01 (Table 1). During subsequent PGE₂ stimulation GlyH-101 increased the 1ˢᵗ and 2ⁿᵈ peaks leaving the plateau unaltered. In contrast, GlyH-101 inhibited synergistic stimulation (Ch/PGE₂) at the 1ˢᵗ peak, 2ⁿᵈ peak, and plateau consistent with inhibition of apical membrane Cl⁻ channels during the synergistic secretory mode. Adding NPPB (at 10μM to exclude toxic effects) left unaltered the adrenaline 1ˢᵗ and 2ⁿᵈ peaks as well as the 1ˢᵗ peaks of PGE₂ and synergistic activation. NPPB [10μM] enhanced the 2ⁿᵈ peak and plateau of PGE₂ activation while inhibiting the synergistic 2ⁿᵈ peak and plateau. Lower efficacy for niflumate (IC₅₀>30μM) combined with increased Gₛ at ≥30μM made evaluation of action on Cl⁻-secretion ambiguous, but it was qualitatively similar to GlyH-101 (data not shown). Neither CFTRinh-172 (30μM, n=4) nor DPC (100μM, n=3) altered the positive \(\text{I}_{\text{sc}} \) responses to adrenaline, PGE₂ or synergistic activation (data not shown).

Expression of the Ca++-activated Cl⁻ channel Tmem16A

Presence of Cl₅Ca-Tmem16A in colon epithelial cells was detected by immuno-blot (Fig 4A). Two bands were apparent, consistent with a fully dissociated monomer and a larger oligomer possibly containing two monomers or a monomer and tightly adherent accessory protein (Galiotta, 2009). Brain expresses Cl₅Ca-Tmem16A (Ferrera et al., 2009) and guinea pig brain lysate exhibited a band at the smaller size seen in colon (Fig 4A), similar to that in portal vein smooth muscle (Davis et al., 2010).

RT-PCR of mRNA from colonic mucosa (Fig 4B) confirmed the presence of Cl₅Ca-Tmem16A (Flores et al., 2009; Yu et al., 2010) and demonstrated splicing events. Guinea pig exon-6B had an amino-acid sequence identical to human Cl₅Ca-Tmem16A (Fig 4C); three amino-acids with positively charged side chains (RKK) differ in mouse and rat exon-6B by a substitution of the central lysine with arginine (RRK). Of the 8 possible splicing combinations for the mRNA segment between exon-6 and exon-16 (Ferrera et al., 2009; O’Driscoll et al., 2010), the dominant transcript in colonic epithelial cells included exon-6B and exon-13 without exon-15 (Figs 4D &4E; GenBank accession HQ341643). The minor apparent transcript including exon-15 (Fig 4B) was not detected among the products.
of this longer segment (Fig 4D). The smaller transcript present in mucosal samples (Fig 4D) likely omitted both exon-6B and exon-15 and occurred in a non-epithelial cell population.

The cellular location of Cl$_{Ca}$-Tmem16A was determined by immuno-fluorescence microscopy. In both surface and crypt cells, Cl$_{Ca}$-Tmem16A immuno-reactivity (ir) was observed as puncta that were consistent with a presence in lateral membranes (Fig 5). Similar clustering of labeling is seen with Cl$_{Ca}$-Tmem16A expressed in HEK293 cells (Kunzelmann et al., 2009). Evidence of Cl$_{Ca}$-Tmem16Air was not apparent along the luminal margins of the surface and crypt cells, suggesting an absence of Cl$_{Ca}$-Tmem16A from the apical membrane.

Discussion

Epithelia involved in fluid secretion generally produce electrogenic Cl$^{-}$-secretion using apical membrane Cl$^{-}$ channels as the route for Cl$^{-}$ exit from the cell into the lumen of a duct or gland (Field, 2003; Barrett & Keely, 2006). Any basolateral membrane Cl$^{-}$ channels would likely be considered as contributing to cell volume regulation during swelling events. In the case of colonic electrogenic K$^{+}$-secretion, basolateral Cl$^{-}$ channels are an integral part of the secretory mechanism by providing a route for exit after uptake via Na$^{+}$-K$^{+}$-2Cl$^{-}$-cotransporters and by contributing to setting the electro-chemical driving forces for K$^{+}$ and Cl$^{-}$ exit (Li et al., 2003; Halm, 2004; Fig 6). The Ca$^{2+}$-activated Cl$^{-}$ channel (Cl$_{Ca}$) inhibitor CaCCinh-A01 (De La Fuente et al., 2008) inhibited K$^{+}$-secretion consistent with an action on basolateral Cl$^{-}$ channels (Fig 1B). Specificity of CaCCinh-A01 for these basolateral channels over apical Cl$^{-}$ channels was apparent by the lack of overt inhibitory action on electrogenic Cl$^{-}$-secretion (Fig 1A).

A pharmacological definition of the basolateral Cl$^{-}$ channels involved in K$^{+}$-secretion provides a means to compare with specific channel types (Planells-Cases & Jentsch, 2009; Verkman & Galietta, 2009; Duran et al., 2010). The non-steroidal anti-inflammatory drugs DPC and niflumate inhibit Cl$^{-}$ channels with low potency, but led to the first generation Cl$^{-}$ channel inhibitor NPPB (Wangemann et al., 1986). Recent high-throughput strategies produced higher potency inhibitors for CFTR and Cl$_{Ca}$ (De La Fuente et al., 2008; Verkman & Galietta, 2009). Although CFTRinh-172 and GlyH-101 were optimized for CFTR inhibition, GlyH-101 also inhibits Cl$_{Ca}$-Tmem16A (Caputo et al., 2008). The order of inhibitor efficacy for K$^{+}$-secretion (Fig 1C; CaCCinh-A01 > GlyH-101 > NPPB ≈ niflumate > DPC ⪢ CFTRinh-172) matched best with the sensitivity of Cl$_{Ca}$ (Eggermont, 2004; Hartzell et al., 2009).

The Cl$_{Ca}$-Tmem16A protein behaves similar to the Cl$_{Ca}$ described in many cell types of native tissues (Eggermont, 2004; Galietta, 2009; Hartzell et al., 2009). Splice variants alter the Ca$^{2+}$-sensitivity and current-voltage characteristics (Caputo et al., 2008; Ferrera et al., 2009) such that different combinations of Cl$_{Ca}$-Tmem16A proteins may account for the observed range of Cl$_{Ca}$ behavior. In particular, both outwardly rectified and linear Cl$_{Ca}$ have been observed. Present in many tissues, Cl$_{Ca}$-Tmem16A occurs in colonic epithelial cells together with other members of the Tmem16 family (Flores et al., 2009; Yu et al., 2010). The dominant form of Cl$_{Ca}$-Tmem16A in guinea pig distal colonic epithelial cells included exons 6B and 13 but lacked exon-15 (Fig 4D). Although absence of exon-15 from Cl$_{Ca}$- Tmem16A does not alter expressed channel function, the presence of exon-13 confers outward rectification (Ferrera et al., 2009). The linear current-voltage dependence of crypt cell adh$_{C}$ (Fig 2) is inconsistent with this feature of Cl$_{Ca}$-Tmem16A. However, other modifications may alter conductance properties. The 146kDa guinea pig Cl$_{Ca}$-Tmem16A protein (Fig 4A) was similar to the expressed size (Schreiber et al., 2010) and may represent the monomer with tightly associated accessory proteins (Galietta, 2009). With the lower
Ca++ sensitivity conferred by exon-6B (Ferrera et al., 2009), β-adrenergic elevation of cytosolic Ca++ (del Castillo et al., 1999) could account for the activation of CaCCinh-A01-sensitive adhICl in crypt cells (Figs 2 & 4C).

The inhibitor sensitivity profile of ClCa and ClCa-Tmem16A provides a direct means to assess channel involvement in K+-secretion. Niflumate inhibition is commonly used to indicate a possible requirement for ClCa, and K+-secretion shares a similar sensitivity to niflumate (Figs 1C) with ClCa-Tmem16A and ClCa (Caputo et al., 2008; Schröder et al., 2008). Both Tmem16A (Caputo et al., 2008) and K+-secretion share sensitivity to GlyH-101 which further supports a mechanistic connection. Also, the lack of CFTRinh-172 inhibition for ClCa-Tmem16A and K+-secretion suggested an absence of CFTR involvement in K+-secretion. Although the potent inhibition of K+-secretion by CaCCinh-A01 supported a requirement for ClCa, limited testing of ClCa-Tmem16A with this inhibitor makes the comparison tentative (Almaça et al., 2009). Overall, the inhibitor sensitivity of K+-secretion (Fig 1C) and adhICl (Fig 2) supported ClCa-Tmem16A as the most likely channel responsible for the adrenaline-activated basolateral membrane Cl− conductance (Fig 6).

Basolateral membrane Cl− currents have been recorded in colonic epithelial cells possibly involved in NaCl absorption and volume regulation (Schultheiβ & Diener, 1998; Mignen et al., 2000). Sensitivity to NPPB suggested a general similarity with adhICl (Fig 2). CLC-2 likely contributes to the basolateral Cl− conductance supporting NaCl absorption and predominantly appears in surface cells (Peña-Münzenmayer et al., 2005). Patients with cystic fibrosis exhibit electrogenic K+-secretion in response to Cl− secretagogues (Goldstein et al., 1991; Mall et al., 2000) supporting the presence of basolateral Cl− channels in secretory cells of the colon. Double knockout mice for CFTR and CLC-2 produce a lower apparent rate of K+-secretion compared with CFTR knockout mice suggesting that CLC-2 contributes to basolateral Cl− conductance involved in K+-secretion (Zdebik et al., 2004). Another manifestation of K+-secretion appears in patients with acute colonic pseudo-obstruction (Jetmore et al., 1992; Camilleri & Szarka, 2009). The K+ wasting observed (van Dinter et al., 2005; Blondon et al., 2008) likely results from prolonged sympathetic activation of K+-secretion. Distinctions between these Cl− channels in the basolateral membranes and those found in the apical membrane (Fig 6) likely would allow for independent cellular regulation mechanisms and provide the possibility for specific pharmaceutical intervention.

In contrast with electrogenic K+-secretion which requires activation of basolateral membrane Cl− channels, electrogenic Cl−-secretion requires activation of apical membrane Cl− channels (Fig 6). Together, CFTR and ClCa often account for this apical Cl− conductance (Eggermont, 2004; Duran et al., 2010), although some secretagogues likely activate other apical Cl− channels (Hoque et al., 2010). The demonstration of ClCa-Tmem16A in the apical membrane of salivary gland cells (Romanenko et al., 2010; Yang et al., 2008) and airway epithelium (Huang et al., 2009) together with Tmem16A-null mice exhibiting suppressed cholinergic-activated Cl−-secretion (Ousingsawat et al., 2009) supports ClCa-Tmem16A as an apical Cl− channel. In addition, the ClCa inhibitor CaCCinh-A01 inhibits purinergic-activated Cl−-secretion in colonic T84-cells (De La Fuente et al., 2008; Tradtrantip et al., 2010) and airway epithelial cells (Namkung et al., 2010). Perhaps an example of species differences, ClCa-Tmem16A was not apparent in the apical membrane of guinea pig colon epithelium (Fig 5) and Cl−-secretion was insensitive to CaCCinh-A01 inhibition (Table 1) supporting a lack of apical involvement by this ClCa Cl−-secretion also was insensitive to CFTRinh-172, although CFTR is present in guinea pig colon (Stewart et al., 2009) and Cl− currents in guinea pig pancreatic ducts are sensitive to CFTRinh-172 (Park et al., 2010). The apparent absence of CFTR and ClCa-Tmem16A contributions imply that other Cl− channel types support the observed electrogenic Cl−-secretion. The inhibitor profile for synergistic mode Cl−-secretion (CCh/PGE2, Table 1) supports the presence of

Exp Physiol. Author manuscript; available in PMC 2012 March 1.
apical Cl\(^{-}\) channels sensitive to GlyH-101 and NPPB but insensitive to CaCCinh-A01, possibly a Cl\(_{Ca}\) other than Cl\(_{Ca}\)-Tmem16A.

Dramatically, CaCCinh-A01 augmented both adrenergic and prostanoid activated Cl\(^{-}\)-secretion (Fig 3) supporting a common cellular model for Cl\(^{-}\)-secretion and K\(^{+}\)-secretion in which basolateral Cl\(^{-}\) channels provide an important route for Cl\(^{-}\) exit (Fig 6). A similar concept has been proposed for airway epithelial cells with the suggestion that CLC-2 and bestrophin play major roles in the basolateral membrane Cl\(^{-}\) conductance (Duta et al., 2006; Fischer et al., 2007). For the colonic epithelium, the actions of CaCCinh-A01 supported a Cl\(_{Ca}\) as the dominant basolateral Cl\(^{-}\) channel involved in secretory regulation. The lack of CaCCinh-A01 augmentation for the synergistic mode of Cl\(^{-}\)-secretion (Fig 3C) supports an activation mechanism in which maximal Cl\(^{-}\)-secretion occurs by inhibiting this basolateral Cl\(^{-}\) conductance such that all Cl\(^{-}\) exit occurs across the apical membrane (Fig 6C). Indeed, the standard conceptualization of Cl\(^{-}\) secretion most closely matches the synergistic mode with its maximization of apical Cl\(^{-}\) exit. Intermediate rates of Cl\(^{-}\)-secretion would be produced not only by graded opening of apical Cl\(^{-}\) channels but also by coordinated opening of basolateral Cl\(^{-}\) channels (Fig 6A).

\(\beta\)-adrenergic activation of ion secretion in the distal colon illustrates the switching between Cl\(^{-}\)-secretion and K\(^{+}\)-secretion that occurs using basolateral Cl\(^{-}\) channels (Fig 1). Early activation includes opening of apical and basolateral Cl\(^{-}\) channels so that the rate of Cl\(^{-}\)-secretion is modest compared with other secretagogues (Fig 6A). The transient nature of \(\beta\)-adrenergic Cl\(^{-}\)-secretion occurs as apical Cl\(^{-}\) channels close until reaching the sustained phase when only basolateral Cl\(^{-}\) channels remain open, which still allows K\(^{+}\)-secretion to continue (Fig 6B). Although both Cl\(^{-}\)-secretion and K\(^{+}\)-secretion require cAMP for activation, the adenylyl cyclases producing the cAMP are distinct for the two types of secretion indicating a divergence of signaling for apical and basolateral Cl\(^{-}\) channels (Halm et al., 2010). Since neuropeptide receptor signaling also suppresses Cl\(^{-}\)-secretion (Zhang et al., 2009b), the colonic epithelium can adjust the rates of Cl\(^{-}\)-secretion and K\(^{+}\)-secretion by several mechanisms.

\textbf{Acknowledgments}

This study was supported by a grant from the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases (DK65845). The authors thank M. Di Fulvio for helpful discussions on expression studies.

\textbf{References}

Exp Physiol. Author manuscript; available in PMC 2012 March 1.
Figure 1. Inhibition of K⁺-secretion by CaCCinh-A01

A. I_{sc} (see Methods) was measured in adjacent isolated mucosae without (solid line) or with (dashed line) CaCCinh-A01 [30μM] added to mucosal and serosal baths ~20min prior to adrenaline [5μM] stimulation (*). I_{sc} was significantly different between control and CaCCinh-A01 treated for basal conditions prior to adrenaline addition (ΔI_{sc} = +36.6±3.1μA/cm², n=4, P<0.002), as well as at the 1\(^{st}\) peak, 2\(^{nd}\) peak, and steady-state plateau (Table 1).

B. The action of CaCCinh-A01 [30μM] on I_{sc} during adrenaline stimulation (adr I_{sc}) was measured as in panel A with ICI-118551 [0.3μM] present to suppress transient positive I_{sc}.

C. Inhibitory responses of CaCCinh-A01 (●, n=4), GlyH-101 (▴, n=4), and NPPB (▼, n=3) for adr I_{sc} were measured in adjacent mucosae with ICI-118551 [0.3μM], by cumulative increases from 1μM to 30μM during steady-state activation. Fits of Henri-Michaelis-Menton kinetics (single binding site) were made to the resulting concentration dependences of adr I_{sc}: CaCCinh EC_{50} = 6.3±1.4μM, GlyH EC_{50} = 9.4±0.7μM, NPPB EC_{50} = 36±9μM, with each significantly different from the others (P<0.05).
Figure 2. Adrenaline activated Cl\(^-\) currents

A. Isolated colonic crypts were stimulated by adrenaline [10\(\mu\)M] during standard whole-cell patch-clamp recording (see Methods): adrenaline (solid line), basal level (dashed line). Increased Cl\(^-\) current was apparent at the K\(^+\) reversal potential (E\(_K\)).

B. Adrenaline stimulated current with pipet solution K\(^+\) replaced with Cs\(^+\), consistent with activated Cl\(^-\) current. Addition of CaCCinh-A01 [50\(\mu\)M] reduced current to basal levels.

C. Adrenaline stimulated (*) inward current measured at E\(_K\) (−86mV) with an activation \(\tau_{0.5}\) of ~14sec (\(I_{Cl}\), mean±sem, n=17). Variable delay in onset was adjusted by aligning the times at which \(I_{Cl}\) began increasing. Similar activation occurred in the absence of K\(^+\) (CsCl pipet, n=8). Substitution of Cl\(^-\) in the recording solutions eliminated the response (n=4); currents were aligned at the time of adrenaline addition.

D. Cl\(^-\) channel blockers (#) inhibited the adrenaline-activated inward current (added 3–5min earlier). The \(\tau_{0.5}\) of inhibition was ~20sec for CaCCinh-A01 (50\(\mu\)M, n=3), ~18sec for GlyH-101 (50\(\mu\)M, n=3), and ~30 sec for NPPB (100\(\mu\)M, n=3).
Figure 3. Stimulation of Cl−-secretion by CaCCinh-A01

A. The action of CaCCinh-A01 [30μM] on the positive ΔI_{sc} component was obtained from 4 adjacent mucosae stimulated as in Fig 1. The difference of ΔI_{sc} (IClΔI_{sc}) with and without ICI-118551 [0.3μM] provided the β2-AdrR Cl− secretory response: control (solid line), CaCCinh-A01 (dashed line). B. Adjacent mucosae were stimulated with adrenaline [5μM] (0min) followed by PGE\textsubscript{2} [3μM] without (solid line) or with CaCCinh-A01 (dashed line). C. Adjacent mucosae were stimulated with adrenaline (0min) and PGE\textsubscript{2} (36min) followed by CCh [10μM] without (solid line) or with CaCCinh-A01 (dashed line).
Figure 4. Expression of Ca++-activated Cl− channel Tmem16A

A. Immuno-blot of the membrane fraction from distal colonic epithelial cells with anti-Tmem16A (Ano1) exhibited bands at 85kDa and 146kDa (arrowheads). These bands were not apparent with the secondary antibody alone, indicating that the primary antibody was necessary to observe results. A cell lysate of guinea pig brain exhibited a band at 84kDa.

B. RT-PCR of mucosal mRNA amplified Tmem16A (Ano1) products with sizes predicted by the position of the primers (asterisks), 504 base pairs for the segment including exon-6B and 395-base-pairs for the segment omitting exon-15. The faint exon-6B product likely represented a splice variant lacking exon-6B, 438bp; and, the faint exon-15 product likely represented a splice variant including exon-15, 473bp. Sequencing of products confirmed identity with Tmem16A (homology: 87% human, 88% mouse, 87% rat). Amplification of GAPDH product (555bp) served as positive control for RNA isolation. Absence of product when not including reverse transcriptase indicated the lack of genomic DNA contamination.

C. The sequence of the insert designated as variant-b (Ferrera et al., 2009) is labeled exon-6B and shown for rat, mouse, human, and guinea pig, with differences from human indicated by shading.

D. In mucosa and epithelial cell samples from 4 colons, the dominant Tmem16A product from exon-6 to exon-16 (~770bp, arrowhead) was consistent with a transcript including exon-6B and exon-13 while omitting exon-15 (confirmed by sequencing; GenBank accession HQ341643). A smaller faint band (~710bp, asterisk) was consistent with a transcript including exon-13 and omitting both exon-6B and exon-15, and was 11±2% (n=4) of the total product in mucosa and 1±1% (n=3) of the total in epithelial cells. Markers were 900, 800, 766, and 600 base pairs.

E. The exons of Tmem16A are shown schematically (alternatively spliced exons above), with the transcript in guinea pig distal colonic epithelial cells including exon-6B and exon-13 while omitting exon-15. The sequenced portion spans exon-4 to exon-16.
Figure 5. Localization of the Tmem16A Ca2+-activated Cl- channel
Tmem16A protein was detected by immuno-fluorescence in distal colon mucosa. A. & B. Surface epithelial cells had prominent Tmem16Air labeling of lateral membranes (arrowheads). Labeling of apical (a) or basal (b) membranes was not apparent. C. – F. Crypts showed distinct lateral membrane Tmem16Air labeling (arrowheads). Luminal margins lacked labeling (asterisk). Apically located goblet granule masses were apparent as dark voids (g). Use of the secondary antibody alone eliminated all labeling (data not shown), indicating that the primary antibody was necessary for the observed results. Scale bars, 10\(\mu\)m.
Figure 6. Cellular model for K^+ and Cl^- secretion
Schematic columnar cells of colonic epithelium show the transport steps required for electrogenic K^+-secretion and Cl^--secretion, with shading to emphasize the receptors and ion channels activated during each secretory mode. A. Early adrenaline activation (β_2-AdrR and a β_1-AdrR/β_2-AdrR complex) includes opening of apical and basolateral membrane Cl^- and K^+ channels (flushing mode). A range of Cl^- and K^+ secretory rates would be possible with this activation scheme depending on relative channel opening and the resulting electrochemical driving forces. The observed positive I_{sc} (Fig 1A, control) indicates that β-
AdrR signaling produces a Cl− secretory rate transiently higher than K+-secretion, presumably due to greater apical membrane Cl− channel activation. Inhibition of basolateral membrane Cl− channels would be anticipated to result in higher rates of Cl− exit across the apical membrane and a larger positive I\textsubscript{sc} (Fig 3A). PGE\textsubscript{2} (E2-PtgR) activation also opens this same group of channels, in a manner that Cl−-secretion generally exceeds K+-secretion (Rechkemmer \textit{et al.}, 1996). Inhibition of basolateral membrane Cl− channels during this PGE\textsubscript{2} stimulated flushing mode also increases Cl− exit across the apical membrane resulting in a larger positive I\textsubscript{sc} (Fig 3B). B. Apical membrane Cl− channels close during sustained adrenaline activation (β1-AdrR/β2-AdrR complex) such that only K+-secretion persists (modulatory mode). The K+ secretory rate can be altered by adjusting the ratio of apical K+ conductance to basolateral K+ conductance. Inhibition of basolateral membrane Cl− channels would stop conductive Cl− exit and thereby limit the negative I\textsubscript{sc} associated with K+-secretion (Fig 1B). C. Stimulation via combined muscarinic-(m1/3-AChR)/prostanoid-(E2-PtgR) activation (synergistic mode) closes basolateral membrane Cl− channels which contributes to maximal Cl−-secretion, as supported by the lack of action by CaCCinh-A01 during this secretory mode (Fig 3C). The synergistic K+ secretory rate is small compared with Cl−-secretion as indicated by the large positive I\textsubscript{sc}, and may be similar in size to the K+-secretion activated by PGE\textsubscript{2} alone.
Table 1

Action of Cl\(^-\) channel inhibitors

<table>
<thead>
<tr>
<th></th>
<th>CaCCinh-A01 30μM (n = 4)</th>
<th>GlyH-101 10μM (n = 4)</th>
<th>NPPB 10μM (n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adrenaline:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st peak</td>
<td>↑ +101.9±21.0 (0.017)</td>
<td>↑ +48.3±9.1 (0.013)</td>
<td>↔ −15.8±61.5 (0.82)</td>
</tr>
<tr>
<td>2nd peak</td>
<td>↑ +147.6±18.4 (0.004)</td>
<td>↑ +169.3±28.6 (0.010)</td>
<td>↔ +11.5±27.5 (0.72)</td>
</tr>
<tr>
<td>plateau</td>
<td>↓ +118.3±7.5 (0.001)</td>
<td>↓ "</td>
<td>↓ "</td>
</tr>
<tr>
<td>PGE(_2):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st peak</td>
<td>↑ +200.2±38.5 (0.014)</td>
<td>↑ +118.0±34.1 (0.041)</td>
<td>↔ +13.1±86.5 (0.89)</td>
</tr>
<tr>
<td>2nd peak</td>
<td>↑ +205.5±42.9 (0.017)</td>
<td>↑ +290.7±16.3 (0.001)</td>
<td>↑ +95.6±21.1 (0.045)</td>
</tr>
<tr>
<td>plateau</td>
<td>↑ +203.6±18.1 (0.002)</td>
<td>↔ +71.8±25.4 (0.07)</td>
<td>↑ +58.7±3.2 (0.003)</td>
</tr>
<tr>
<td>CCh/PGE(_2):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd peak</td>
<td>↔ +1.0±69.0 (0.98)</td>
<td>↓ −345.9±47.1 (0.005)</td>
<td>↓ −98.3±15.7 (0.025)</td>
</tr>
<tr>
<td>plateau</td>
<td>↔ −29.5±54.9 (0.63)</td>
<td>↓ −221.2±9.8 (0.001)</td>
<td>↓ −150.4±28.3 (0.034)</td>
</tr>
</tbody>
</table>

Secretagog activated I\(_SC\) were compared in the presence and absence of inhibitors (ΔI\(_SC\) = inhibitor – control; [μA/cm\(^2\)]) for adrenaline (Fig 1A), PGE\(_2\) (Fig 3B), and CCh/PGE\(_2\) (Fig 3C). Significant increases in activation (stimulation, ↑) and decreases in activation (inhibition, ↓) are indicated (P values).

* Data in Fig 1C.