Dynamics of Fingering Convection I: Small-Scale Fluxes and Large-Scale Instabilities

Adrienne L. Traxler
Wright State University - Main Campus, adrienne.traxler@wright.edu

Stephan Stellmach

Pascale Garaud

T. Radko

N. Brummell

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the [Physics Commons](https://corescholar.libraries.wright.edu/physics)

Repository Citation

https://corescholar.libraries.wright.edu/physics/976

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities

A. TRAXLER1, S. STELLMACH2,1,3, P. GARAUĐ1, T. RADKO4, AND N. BRUMMELL1

1Applied Mathematics and Statistics, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
2Institut für Geophysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany,
3Institute of Geophysics and Planetary Physics, University of California, Santa Cruz, CA 95064, USA
4Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA

(Received ?? and in revised form ??)

Double-diffusive instabilities are often invoked to explain enhanced transport in stably-stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean’s thermocline and typically increases diapycnal mixing by two orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations, using our calculated turbulent fluxes to parameterize small-scale transport. The theory recovers the intrusive instability, the collective instability, and the γ-instability as limiting cases. We find that the fastest-growing large-scale mode depends sensitively on the ratio of the background gradients of temperature and salinity (the density ratio). While only intrusive modes exist at high density ratios, the collective and γ-instabilities dominate the system at the low density ratios where staircases are typically observed. We conclude by discussing our findings in the context of staircase formation theory.

Key Words: Double Diffusive Convection, Geophysical Flows

1. Introduction

When the density of a fluid depends on (at least) two components, nominally stably-stratified systems can, under certain circumstances, undergo double-diffusive instabilities leading to significant vertical buoyancy transport. Here, we focus on the case of the “fingering” instability, which often occurs in fluids which are thermally stably stratified, but have an inhomogeneous composition. A well-known example is found in upper layers of the Earth’s oceans where evaporation exceeds precipitation, leading to warm salty water overlaying colder fresh water \cite{Stern1960, Schmitt2005}. Since heat diffuses
faster than salt, parcels of fluid displaced downward rapidly lose their heat excess while maintaining a larger salt concentration. They become denser than the environment and continue to sink, forming structures called “salt-fingers”. Similar fingering instabilities can occur in any other thermally stably stratified solution, provided the concentration of the slower-diffusing solute increases with height (Stern 1960; Schmidt 1983).

The saturated state of this instability, fingering convection, takes the form of tightly-packed, vertically-elongated plumes of sinking dense fluid and rising light fluid (Stern 1960; Kunze 2003), and significantly enhances the vertical transport of both heat and chemical composition. In the ocean, fingering convection increases diapycnal mixing within extended regions (Schmitt 1994; Khukov & Karlin 1995; You 2002) of the thermocline by at least two orders of magnitude over molecular diffusion. It has been argued that the nutrient supply of the upper ocean (Dietze et al. 2004), the surface temperature and the surface fluxes of CO₂ and O₂ are all affected by this process (Glessmer et al. 2008). Conditions favorable for fingering convection also exist in many other natural systems (Schmitt 1983). In the astrophysical context for example, a variety of situations lead to the development of unstable mean molecular weight gradients in otherwise stably stratified “radiative” regions within stars and giant planets (Vauclair 2004; Stancliffe et al. 2007; Charbonnel & Zahn 2007). Since the long-term thermal evolution and chemical stratification of these objects is regulated by the transport bottleneck caused by radiative regions, the presence or absence of mixing by fingering convection can influence their observable properties dramatically.

While fingering convection is by nature a small-scale phenomenon, it also has an intriguing propensity to generate dynamical structures on very large scales, such as internal gravity waves, theromaline intrusions and thermohaline staircases. As first argued by Stern (1969) and Holyer (1981), a homogeneous field of fingers can become unstable to the so-called “collective instability” leading to the spontaneous generation of internal gravity waves in regions of active salt fingering. This instability was later confirmed in laboratory experiments by Stern & Turner (1969) and in direct numerical simulations by Stern et al. (2001).

Thermohaline intrusions are different kinds of large-scale structures which are nevertheless also often associated with fingering convection. They take the form of laterally interleaving layers with distinct temperature and salinity signatures, and can spontaneously form in fluids which are stratified both vertically and horizontally. They are commonly observed in the ocean (Ruddick & Richards 2003), and have been produced in lab experiments (Ruddick & Turner 1979; Ruddick et al. 1999) and numerically (Simeonov & Stern 2007). See Ruddick & Kerr (2002) for a detailed discussion of intrusion theory.

Finally, one of the most dramatic signatures of active fingering convection in the ocean is the formation of mixed layers separated by salt finger interfaces, known as theromaline staircases. Persistent staircases have been documented in the Tyrrhenian Sea, below the Mediterranean outflow, and in the western tropical North Atlantic (Schmitt 1994). Layer formation is also observed in laboratory experiments (Stern & Turner 1969; Krishnamurti 2003). Layering enhances vertical mixing by up to an order of magnitude (Schmitt et al. 2003; Veronis 2007) relative to globally similarly stratified regions characterised by a smoother stratification. Forty years after the discovery of this phenomenon in oceanographic field measurements (Tait & Howe 1968, 1971), a generally accepted explanation is still lacking. Radko (2003) argued through theoretical and numerical analyses that the observed layering is likely to be caused by the so-called γ-instability—an instability driven by variations in the ratio of the turbulent heat and salt fluxes.

The conventional approach to analysing the spontaneous generation of structures from
fingered convection uses the assumed separation of scale between the finger scale and the emerging structure scale to construct a mean-field theory, in which the effect of the small-scale fingering is modeled through turbulent fluxes. The resulting mean-field equations describe the evolution of the large-scale fields only and can straightforwardly be analysed for linear stability. Globally speaking, the modulation of the background stratification by large-scale temperature and salinity perturbations induces a modulation of the turbulent fluxes. When the divergence or convergence of these modified fluxes act to enhance the original perturbation, large-scale modes of instability are excited. Different variants of mean-field models have been individually successful in representing the gross properties of each of the aforementioned large-scale phenomena (intrusions, collective instability, γ-instability).

In this paper, we show that these various modes of instability can actually be described by a single unifying mean-field formalism, and are all recovered as limiting cases of our theory—each one corresponding to a different feedback mechanism between the large-scale perturbation and the induced turbulent fluxes. In §2 we present our unified mean-field model, and its relationship with previous work. In §3, we then perform a series of 3D simulations for parameter values typical of salty water in the ocean, designed to measure the turbulent transport of heat and salt as parametric functions of the background stratification.

Using the small-scale flux laws derived, we then calculate and discuss in §4 the expected growth rates of the various large-scale modes of instability as functions of the overall stratification of the region. Our results indicate that the relative importance of these various modes is highly sensitive to the density ratio (the ratio of the vertical temperature and salinity gradients normalised by their expansion/contraction coefficients). For low density ratio the dynamics of the system are primarily controlled by the collective and γ-instabilities. For intermediate density ratios, the γ-instability is suppressed and the dynamics are dominated by gravity waves, with intrusive modes gaining importance. For larger values of the density ratio, only intrusive modes are unstable.

Finally, we discuss our findings in §5, focussing on the implication of the measured turbulent fluxes for oceanic mixing in §5.1 and on the role of the large-scale instabilities studied in the formation of thermohaline staircases in §5.2.

2. Generalised mean-field theory of fingering convection

2.1. The governing equations for homogeneous fingering convection

Fingered convection, when observed in natural systems, typically occurs far from physical boundaries. For this reason, we adopt an approach which minimises boundary effects by considering triply-periodic temperature, salinity and velocity perturbations driven by a steady and uniform fingering-unstable background stratification. This setup has been advocated by others before for studying fingering convection (Stern et al. 2001; Radko 2003), and is ideally suited to numerical simulations using spectral methods (see §3 and Paper II). It is important to note that it does not suffer from the well-known pathology of thermal convection in a triply-periodic system—the so-called homogeneous Rayleigh-Bénard problem (Borne & Orszag 1996; Calzavarini et al. 2006), where the fastest growing modes span the entire domain and depend sensitively on the aspect ratio of the box. Instead, the typical length scale of convective motions in the fingering regime is set by the diffusive length scales and is independent of the box size, provided the box is large enough (see Appendix).

We consider a Cartesian coordinate system (x, y, z) with z increasing upward in the
vertical direction. In all that follows, we use the Boussinesq approximation. We assume that the background temperature and salinity profiles $T_0(x, z)$ and $S_0(x, z)$ are bilinear functions of x and z, $T_0(x, z) = T_{0x}x + T_{0z}z$ and $S_0(x, z) = S_{0x}x + S_{0z}z$. Without loss of generality, the background fields are assumed to be two-dimensional (2D) by aligning the horizontal gradients with the x-axis. We assume (as in Walsh & Ruddick 1995) that the overall horizontal density gradient is zero, in which case $\alpha T_{0x} = \beta S_{0x}$ where α and β are the coefficients of thermal expansion and compositional contraction respectively. The slope of the background temperature gradient in this coordinate system is $\phi = T_{0x}/T_{0z}$.

We perform a standard non-dimensionalisation procedure for studying local fingering convection. We use the expected finger scale (see Sterrett 1960) as the length scale, $[l] = d = (\kappa_T \nu / g \alpha T_{0z})^{1/4}$, where g is gravity, ν is viscosity and κ_T is thermal diffusivity. We then define the corresponding thermal diffusion time scale, $[\tau] = d^2 / \kappa_T$, the velocity scale $[u] = \kappa_T / d$, and the temperature and salinity scales, $[T] = T_{0z}d$ and $[S] = (\alpha / \beta) T_{0z}d$. Nondimensional parameters of interest are the Prandtl number, $Pr = \nu / \kappa$, the background density ratio, $R_0 = \alpha T_{0z} / \beta S_{0z}$ and the diffusivity ratio, $\tau = \kappa_S / \kappa_T$.

The non-dimensional equations for the evolution of the velocity field $u = (u, v, w)$ and the temperature and salinity perturbations $T(x, y, z, t)$ and $S(x, y, z, t)$ are then:

\begin{equation}
\frac{1}{Pr} \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla p + (T - S) \hat{k} + \nabla^2 u, \quad (2.1a)
\end{equation}

\begin{equation}
\nabla \cdot u = 0, \quad (2.1b)
\end{equation}

\begin{equation}
\frac{\partial T}{\partial t} + \phi u + w + u \cdot \nabla T = \nabla^2 T, \quad (2.1c)
\end{equation}

\begin{equation}
\frac{\partial S}{\partial t} + \phi u + \frac{1}{R_0} w + u \cdot \nabla S = \tau \nabla^2 S, \quad (2.1d)
\end{equation}

where p is the non-dimensional pressure perturbation from hydrostatic equilibrium and \hat{k} is the unit vector in the z-direction.

2.2. Generalised mean-field theory

As discussed in § 1, fingering convection is often associated with the emergence of dynamical structures on scales much larger than individual fingers. We begin by deriving a generalised set of mean-field equations, and then study their linear stability to various large-scale modes.

2.2.1. Mean-field equations

As in Radko (2003), we are interested in the large-scale behaviour of the system of equations \[(2.1a \& 2.1b)\] when averaged over spatial/temporal scales of many fingers. We introduce the notation $\overline{\cdot}$, where the overbar denotes an averaging process which we assume may commute with spatial and temporal derivatives. Let $\overline{u} = \bar{u} + u'$ and similarly for T and S, in which case $\overline{u'} = \overline{T'} = \overline{S'} = 0$. The averaged governing equations now become:

\begin{equation}
\frac{1}{Pr} \left(\frac{\partial \overline{\pi}}{\partial t} + \overline{\pi} \cdot \nabla \overline{\pi} \right) = -\nabla \overline{p} + (\overline{T} - \overline{S}) \hat{k} + \nabla^2 \overline{\pi} - \frac{1}{Pr} \nabla \cdot \mathbf{R}, \quad (2.2a)
\end{equation}

\begin{equation}
\frac{\partial \overline{\pi}}{\partial t} + \phi \overline{u} + \overline{w} + \overline{u} \cdot \nabla \overline{T} = \nabla^2 \overline{T} - \nabla \cdot \mathbf{F}_T, \quad (2.2b)
\end{equation}

\begin{equation}
\frac{\partial \overline{\pi}}{\partial t} + \phi \overline{u} + \frac{1}{R_0} \overline{w} + \overline{u} \cdot \nabla \overline{S} = \tau \nabla^2 \overline{S} - \nabla \cdot \mathbf{F}_S, \quad (2.2c)
\end{equation}
where \(R_{ij} = \overline{u'_i u'_j} \), and the turbulent fluxes are \(F_T = \overline{u' T'} \), \(F_S = \overline{u' S'} \).

In what follows we now drop the overbar and only refer to the evolution of the large-scale fields \(u, T, S \). As in previous analyses, we assume that the Reynolds stress term is small enough to neglect (a fact that is easily verified \textit{a posteriori}), and additionally assume that only the vertical component of the heat and salt fluxes are large enough to be significant (so that \(F_T \approx F_T \hat{k} \), \(F_S \approx F_S \hat{k} \)). However, we retain the diffusion terms in all three equations. In nondimensional terms, the turbulent fluxes are characterised by the Nusselt number \(\text{Nu} \) and the turbulent flux ratio \(\gamma \), defined as:

\[
\text{Nu} = \frac{F_T - (1 + \partial T/\partial z)}{-(1 + \partial T/\partial z)},
\]

\[
\gamma = \frac{F_T}{F_S}.
\]

Note that these definitions of \(\text{Nu} \) and \(\gamma \) differ somewhat from those of Radko (2003), who includes the molecular diffusive terms in his definition of \(F_T \) and \(F_S \). Our formalism has greater generality, since it allows for horizontal diffusive fluxes. The difference becomes important at low Nusselt number.

We now make the key assumption that at any given time both \(\text{Nu} \) and \(\gamma \) depend only on the local value of the density ratio \(R_\rho \), which in nondimensional terms is

\[
R_\rho = \frac{\alpha T_0 (1 + \partial T/\partial z)}{\beta S_0 [1 + (\alpha T_0/\beta S_0) \partial S/\partial z]},
\]

\[
= R_0 \frac{1 + \partial T/\partial z}{1 + R_0 \partial S/\partial z}.
\]

The functions \(\text{Nu}(R_\rho) \) and \(\gamma(R_\rho) \) can be determined experimentally, using numerical simulations (see §3).

The system of equations describing the evolution of the large-scale quantities \(u, T, S \) is now

\[
\frac{1}{\text{Pr}} \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla p + (T - S) \hat{k} + \nabla^2 u,
\]

\[
\frac{\partial T}{\partial t} + \phi u + w + u \cdot \nabla T = \nabla^2 T - \frac{\partial F_T}{\partial z},
\]

\[
\frac{\partial S}{\partial t} + \phi u + \frac{1}{R_0} w + u \cdot \nabla S = \tau \nabla^2 S - \frac{\partial F_S}{\partial z},
\]

where the flux derivative terms on the right hand side use (2.3) and (2.4) to express \(F_T \) and \(F_S \) in terms of \(\text{Nu} \) and \(\gamma \).

2.2.2. Linearised mean-field theory

The mean-field equations derived above exhibit steady solutions describing a state of homogeneous fingering convection, with zero mean velocity, zero deviation from the background temperature and salinity fields and constant (non-dimensional) heat and salinity fluxes \(F_{T0} = (1 - \text{Nu}_0(R_0)) \) and \(F_{S0} = \gamma(R_0) / F_{T0} \). The stability of this homogenous turbulent state can be investigated by adding a small perturbation to the mean quantities, and linearising the mean-field equations. Large-scale temperature and salinity perturbations induce large-scale variations in the density ratio, so that \(R_\rho = R_0 + R'_\rho \). This, in turn, modulates the turbulent fluxes in a way which may in some circumstances further enhance the initial perturbations or quench them. Various modes of instability are re-
lated to different feedback mechanisms between the fields and turbulent fluxes, through the parametric functions \(\text{Nu}(R_p) \) and \(\gamma(R_p) \).

Assuming that perturbations away from the linear background gradients are small, we first have, expanding (2.5) to linear order:

\[
R_p = R_0 \left(1 + \frac{\partial T}{\partial z} - R_0 \frac{\partial S}{\partial z} \right) = R_0 + R'_p, ~ (2.7)
\]

which uniquely defines \(R'_p \), and then

\[
\text{Nu}(R_p) \approx \text{Nu}(R_0) + \frac{d\text{Nu}}{dR_p} \bigg|_{R_0} R'_p, ~ (2.8)
\]

and similarly for \(\gamma \). Rearranging (2.3) and (2.4) yields \(F_T = (1 - \text{Nu})(1 + \partial T/\partial z) \) and \(F_S = F_T/\gamma \). It then follows that

\[
- \frac{\partial F_T}{\partial z} = A_2 \left(\frac{\partial^2 T}{\partial z^2} - R_0 \frac{\partial^2 S}{\partial z^2} \right) + (\text{Nu}_0 - 1) \frac{\partial^2 T}{\partial z^2}, \quad (2.9)
\]

\[
- \frac{\partial F_S}{\partial z} = A_1 \left(\frac{\partial^2 T}{\partial z^2} - R_0 \frac{\partial^2 S}{\partial z^2} \right)(\text{Nu}_0 - 1) - \frac{1}{\gamma_0} \frac{\partial F_T}{\partial z}. \quad (2.10)
\]

where we have abbreviated \(\text{Nu}(R_0) = \text{Nu}_0, \gamma(R_0) = \gamma_0 \), and defined

\[
A_1 = R_0 \frac{\partial \gamma^{-1}}{\partial R_p}, \quad (2.11)
\]

\[
A_2 = R_0 \frac{\partial \text{Nu}}{\partial R_p}. \quad (2.12)
\]

Note that our \(A_1, A_2 \) are not strictly equal to those defined by [Radko (2003)] but reduce to the same quantities in the limit where turbulent fluxes are much larger than diffusive fluxes.

A standard linear stability analysis of (2.6), using normal modes of the form \(\{\mathbf{u}, T, S\} = \{\mathbf{u}, T, S\} \exp(\lambda t + ilx + imy + ikz) \), yields a cubic equation for the growth rate, \(\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0 = 0 \), with

\[
a_2 = |k|^2(1 + Pr + \tau) + k^2 \left[(1 - A_1 R_0)(\text{Nu}_0 - 1) + A_2 \left(1 - \frac{R_0}{\gamma_0} \right) \right], \quad (2.13a)
\]

\[
a_1 = |k|^4(\tau Pr + \tau + Pr) + k^2 |k|^2 \left[(\tau + Pr)(A_2 + \text{Nu}_0 - 1) - A_2(1 + Pr)\frac{R_0}{\gamma_0} \right]
- A_1 R_0(1 + Pr)(\text{Nu}_0 - 1) - k^4 A_1 R_0(\text{Nu}_0 - 1)^2 + Pr \frac{l^2}{|k|^2} \frac{l^2 + m^2}{l^2} \left(1 - \frac{1}{R_0} \right), \quad (2.13b)
\]

\[
a_0 = |k|^6 Pr + k^2 |k|^4 Pr \left[(\tau - A_1 R_0)(\text{Nu}_0 - 1) + A_2 \left(\tau - \frac{R_0}{\gamma_0} \right) \right] - k^4 |k|^2 Pr R_0 A_1 (\text{Nu}_0 - 1)^2
+ Pr \frac{l}{|k|^2} \left[|k|^2 \left(\frac{l^2 + m^2}{l^2} \left(\frac{1}{R_0} - \frac{1}{\gamma_0} \right) - k\phi(\tau - 1) \right) \right]
+ k^2 A_1(1 - R_0)(\text{Nu}_0 - 1) \left(\frac{l^2 + m^2}{l^2} \right) - k\phi)
- k^2 \left[A_2(1 - R_0) + \text{Nu}_0 - 1 \right] \left[\frac{l^2 + m^2}{l^2} \left(\frac{1}{R_0} - \frac{1}{\gamma_0} \right) - k\phi \left(1 - \frac{1}{\gamma_0} \right) \right], \quad (2.13c)
\]

where \(|k|^2 = k^2 + l^2 + m^2 \).
2.2.3. Relationship with previous theories

Presented above is a unified formulation of several mean-field theories, including the effects of all diffusion terms and the contribution of variable turbulent flux ratio γ as well as allowing for the presence of lateral background gradients in temperature and salinity. Several limiting cases have been discussed previously in the literature (unless otherwise noted these are 2D theories, so $m = 0$).

The fingering instability. Although technically not a mean-field instability, it is reassuring to note that the fingering instability itself (e.g. Baines & Gill 1969) is recovered when turbulent fluxes and lateral gradients are ignored ($A_1 = A_2 = \text{Nu}_0 - 1 = \phi = 0$). In that case the cubic defined by (2.13) becomes the well-known cubic equation for the growth rates of the fingering modes with

\begin{align}
 a_2 &= |k|^2 (1 + \text{Pr} + \tau), \\
 a_1 &= |k|^4 (\tau \text{Pr} + \tau + \text{Pr}) + \text{Pr} \frac{l^2}{|k|^2} \left(1 - \frac{1}{R_0} \right), \\
 a_0 &= |k|^6 \tau \text{Pr} + \text{Pr} l^2 \left(\tau - \frac{1}{R_0} \right).
\end{align}

The collective instability, as derived by Stern et al. (2001), is recovered from (2.13) by omitting lateral gradients ($\phi = 0$), neglecting possible variation in γ (so $A_1 = 0$) and discarding the diffusion terms for temperature and salinity—but not velocity—in (2.2).

\begin{align}
 a_2 &= \text{Pr} |k|^2 + k^2 \left[A_2 \left(1 - \frac{R_0}{\gamma_0} \right) + \text{Nu}_0 - 1 \right], \\
 a_1 &= \text{Pr} k^2 |k|^2 \left[A_2 \left(1 - \frac{R_0}{\gamma_0} \right) + \text{Nu}_0 - 1 \right] + \text{Pr} \frac{l^2}{|k|^2} \left(1 - \frac{1}{R_0} \right), \\
 a_0 &= \text{Pr} \frac{k^2 l^2}{|k|^2} \left[A_2 (1 - R_0) + \text{Nu}_0 - 1 \right] \left(\frac{1}{\gamma_0} - \frac{1}{R_0} \right).
\end{align}

Stern (1969) argued that modes are excited when the Stern number, written in our notation as

\begin{equation}
 A = \frac{(\text{Nu}_0 - 1) \left(\frac{1}{\gamma_0} - 1 \right)}{\text{Pr} \left(1 - \frac{1}{R_0} \right)},
\end{equation}

exceeds a value of order one. The unstable modes essentially represent overstable gravity waves.

An elegant physical interpretation (Stern et al. 2001) of the collective instability is obtained by analogy with the laminar, linear double-diffusive instability in the “diffusive regime”, where the slowly diffusing field is stably stratified while the rapidly diffusing field is unstably stratified. In this case, growing oscillatory modes akin to internal gravity waves are excited instead of fingers. Since fingering convection induces a mean salt flux larger than the heat flux the roles of the two fields are reversed, and the faster diffusing field is now the salinity field. From a turbulent point of view, the “diffusive regime” is recovered.

The theory of intrusions of Walsh & Ruddick (1995) is recovered by discarding the diffusion terms in (2.2) and setting γ constant ($A_1 = 0$), as well as neglecting Reynolds
stresses in their formulation:

\[
a_2 = k^2 A_2 \left(1 - \frac{R_0}{\gamma_0} \right) + (N_0 - 1)(1 - A_1 R_0),
\]

\[(2.17a) \]

\[
a_1 = -k^2 R_0 (N_0 - 1)^2 A_1 + \Pr \frac{k^2}{|k|^2} \left(1 - \frac{1}{R_0} \right),
\]

\[(2.17b) \]

\[
a_0 = \Pr \frac{k^2}{|k|^2} \left[A_2 (1 - R_0) + N_0 - 1 \right] \left[k \phi \left(1 - \frac{1}{\gamma_0} \right) + \left(\frac{1}{\gamma_0} - \frac{1}{R_0} \right) \right]
\]

\[+ A_1 (1 - R_0)(N_0 - 1)(l - k \phi) \right].
\]

The mechanism underlying intrusive instabilities can be illustrated by imagining an alternating horizontal shear flow superimposed on the background stratification (see e.g. Ruddick & Kerr 2003). The lack of horizontal density variation in the background (where lateral gradients of temperature and salinity compensate) implies that the background isohalines are steeper than the isothermals, and are therefore more strongly affected by horizontal advection. Alternating vertical variations in \(R_s \) result, which in turn strengthens or weakens the fingering action, and the resulting flux convergences and divergences reinforce the intrusive motion. Depending on the orientation of the perturbation, both direct and oscillatory modes are possible (Walsh & Ruddick 1995).

The \(\gamma \)-instability, as derived in Radko (2003), is recovered by considering horizontally invariant perturbations \((l = m = 0, |k|^2 = k^2) \) with zero velocity field. From the remaining temperature and salinity equations we obtain a quadratic expression for the growth rate:

\[
a_2 = 1,
\]

\[(2.18a) \]

\[
a_1 = k^2 \left(1 + \tau (1 - A_1 R_0)(N_0 - 1) + A_2 \left(1 - \frac{R_0}{\gamma_0} \right) \right),
\]

\[(2.18b) \]

\[
a_0 = k^4 \left(\tau A_1 R_0)(N_0 - 1) - A_1 R_0(N_0 - 1)^2 + A_2 \left(\tau - \frac{R_0}{\gamma_0} \right) \right).
\]

\[(2.18c) \]

Differences between these coefficients and those given in Radko (2003) arise from our alternate definition of \(\gamma \), but can be shown to be reducible to each other in the limit of large Nusselt number. Note however that for \(\gamma \)-modes, which do not have any horizontal variation, the use of the total fluxes \(F_T^{\text{tot}} = F_T - (1 + \partial T/\partial z) \) and \(F_S^{\text{tot}} = F_S - \tau (1/R_0 + \partial S/\partial z) \) (originally advocated by Radko) recovers his much simpler quadratic with

\[
a_2 = 1,
\]

\[(2.19a) \]

\[
a_1 = k^2 \left((1 - A_1^{\text{tot}} R_0)N_0 + A_2 \left(1 - \frac{R_0}{\gamma_0} \right) \right),
\]

\[(2.19b) \]

\[
a_0 = -k^4 A_1^{\text{tot}} R_0 N_0^2,
\]

\[(2.19c) \]

where \(\gamma_0^{\text{tot}} = F_T^{\text{tot}}/F_S^{\text{tot}} \) and \(A_1^{\text{tot}} = R_0 d(1/\gamma^{\text{tot}})/dR_p \). As shown by Radko, a sufficient condition for the existence of a positive real root is that \(A_1^{\text{tot}} > 0 \), or in other words that \(\gamma^{\text{tot}} \) should be a decreasing function of \(R_p \). The physical interpretation of this so-called \(\gamma \)-instability” is fairly subtle, and is described in detail in the original paper (Radko 2003).

\[\dagger \] To see why our formalism yields a cubic while Radko’s yields a quadratic, it should be noted that \[(2.19) \] can be factored (with \(l = m = 0 \)) as \((\lambda + k^2 \Pr)(\lambda^2 + b_l \lambda + b_0) \). The first root describes the viscous decay of any initial (horizontally invariant) velocity perturbation.
3. Turbulent flux laws

To proceed forward and estimate growth time scales for the various mean-field modes of instability excited by fingering convection, we need to determine the non-dimensional turbulent fluxes \(\text{Nu} \) and \(\gamma \) as functions of the density ratio. Naturally, these depend on the diffusivity ratios \(\text{Pr} \) and \(\tau \) relevant of the system studied. Here, we choose to focus on the case of salty water (\(\text{Pr} = 7 \) and \(\tau = 0.01 \)), as it is directly applicable to the oceanographic context. Appendix A summarises the numerical algorithm, describes the experimental protocol for determining heat and salt fluxes, and discusses the problem of selection of the domain size to be used for these experiments. What follows are the results of a body of simulations at different density ratios \(R_\rho \).

3.1. Typical results

Figure 1 shows a visualisation of the salinity field obtained in the saturated state of a fingering system with \(R_\rho = 1.2 \), \(R_\rho = 2 \) and \(R_\rho = 10 \). On account of the small diffusivity of salt compared with all other fields, a broad range of spatial scales exists, and a high numerical resolution is \textit{a priori} required to resolve all arising structures and correctly model the system. We find that, as expected, the salinity field has a complicated structure for small \(R_\rho \), but successively becomes more organised with increasing density ratio. Regular, vertically elongated filamentary structures dominate for \(R_\rho \geq 10 \). In order to ensure that the smallest scales of the salinity field are fully resolved, we had to use the highest resolution available (a grid of \(768 \times 768 \times 1536 \)) at \(R_\rho = 1.2 \), although half that resolution is sufficient for \(R_\rho \geq 2 \). Furthermore, it turns out that a rough estimate of the flux laws can in fact be made with a much coarser resolution (about \(32^3 \)). This rather surprising result shows that the diffusion of salt does not play an important role in controlling the mixing in the heat-salt system, for very turbulent flows (low \(R_\rho \)). Moreover, it suggests that low-resolution simulations may be sufficient to estimate turbulent fluxes for any high-Pr, low-\(\tau \) fluid.

3.2. Turbulent flux laws for the heat-salt system

The control parameters used in each simulation, along with some key results, are summarised in table 1. Plots displaying the most important findings are shown in figure 2, which also contains results from an accompanying set of 2D simulations.

As expected, we find that the turbulent fluxes \(|F_S| \) and \(|F_T| \) decrease rapidly with increasing density ratio, and tend to be considerably larger in the three-dimensional (3D) case than in 2D. The ratio of 3D to 2D fluxes is not constant, but tends to grow with increasing \(R_\rho \). Because of their obvious oceanic relevance, table 1 also lists values for the “eddy” diffusivities \(K_T = \kappa_T |F_T| \) and \(K_S = \kappa_T R_\rho |F_S| \) of heat and salt. At \(R_\rho = 1.2 \), we find \(K_T \approx 0.21 \, \text{cm}^2/\text{s} \) and \(K_S \approx 41 \, \text{cm}^2/\text{s} \). Both quantities quickly decrease with increasing \(R_\rho \).

The turbulent flux ratio \(\gamma \) tends to be larger in 2D than in 3D. It initially decreases quickly with growing \(R_\rho \), attains a minimum around \(R_\rho \approx 7 \) (\(\gamma \approx 0.45 \) in 3D) and then slowly increases again. A widely used theoretical prediction based on linearly fastest growing modes, originally proposed by Schmitt (1979), tends to over-estimate \(\gamma \) considerably, and also predicts the minimum to occur at a smaller (\(R_\rho = 4 \)) value of \(R_\rho \). The total flux ratio \(\gamma_{\text{tot}} \) (see §2.2), which plays a prominent role in the \(\gamma \)-instability theory, is shown in figure 3. Its value deviates significantly from the turbulent flux ratio \(\gamma \) at higher
values of R_ρ, where the Nusselt number is lower. As a result, the position of the minimum of the curve occurs for lower R_ρ, thus restricting the range for which the γ-instability is expected to $R_\rho \leq 4$. Furthermore, since the growth rate of the instability is proportional to $d(1/\gamma_{\text{tot}})/dR_\rho$, we find that γ-modes should only be significant for $R_\rho \leq 2$.

Finally, we find that the Stern number A, which controls the dynamics of the collective instability, exceeds unity for $R_\rho \leq 7$ in the 3D case, while two-dimensional simulations
Figure 2. Parametric dependence of the non-dimensional fluxes F_T, F_S as well as their ratio γ and of the Stern number A as a function of R_ρ. Results from both three- and two-dimensional simulations are shown. Panel c) also contains a theoretical prediction of $\gamma(R_\rho)$ based on the fastest growing linear modes (Schmitt 1979).

Table 1. Summary of simulations of fingering convection for the heat-salt system ($\tau = 0.01, Pr = 7$) in a computational domain containing $5 \times 5 \times 10$ fastest growing finger wavelengths (FGW, see Schmitt 1979). $\Delta t_{\text{average}}$ denotes the length of the time interval over which the data has been averaged, $K_T = \kappa_T |F_T|$ and $K_S = \kappa_T R_\rho |F_S|$ are the “eddy” diffusivities for heat and salt, taking $\kappa_T = 1.4 \times 10^{-7} \text{m}^2/\text{s}$, and A is the Stern number defined in (2.16).
Figure 3. Comparison of the flux ratio γ_{tot} as calculated using the total heat and salt fluxes (both turbulent and convective), and γ as calculated using only the fluxes due to turbulent fingering convection. The diffusive contributions become important as R_ρ increases and the fingering fluxes drop, affecting not only the values of the flux ratio but also the location of the minimum of the curve.

considerably under-estimate A and therefore underestimate the range of R_ρ for which the system may be unstable to these modes.

Further discussion of the implications of these simulations is deferred to §5. For now, the above results provide the necessary data to apply the mean-field theory of §2 to the oceanic parameter regime.

4. Dominant modes of instability as a function of background density ratio

The flux laws determined above enable us to estimate the growth rates for the various mean-field modes of instability discussed in §2. As seen in §2.2.3, up to four modes of instability exist, but it is not immediately clear which mode dominates in the various regions of parameter space. To answer this question in the oceanic context, we now examine the solutions of the growth rate equation (2.13) for different values of R_0, with the corresponding γ_0, Nu$_0$, A_1 and A_2 calculated from the turbulent fluxes measured in section 3 and shown in table 2. We then find the largest growth rate for a given mode geometry (as determined by k and l), maximising Re(λ) over the three roots of the cubic. Figure 4 shows this maximum growth rate as a function of wavenumber for three representative values of the background density ratio: $R_0 = 7$, where the fingering instability is weak, $R_0 = 1.5$, where the density gradient is close to unstable and turbulent fluxes are large (see table 2), and an intermediate value of $R_0 = 4$. The plots show l on a logarithmic scale to capture the wide range of relevant horizontal lengths, from the small filaments of the fingering instability up through extensive lateral intrusions.

Since the growth rate of the fingering instability is recovered from our mean-field theory when A_1, A_2, etc. are zero (as discussed in §2.2.3), an analogous feature appears here even though A_1, $A_2 \neq 0$. This “fingering” mode appears as a “bulb” on all plots, at the smallest horizontal scales (large l) and large vertical scales (low k). Note, however, that mean-field theory should not be applied to model such small-scale structures. In practice, the bulb merely serves to indicate the region of l space ($\log l \geq -1$) above which the theory is no longer applicable.
Table 2. Empirically derived parameters for growth rate prediction using the unified theory at high, midrange, and low values of background density R_ρ. A_1 and A_2 are estimated by using neighboring values of the density ratio.

<table>
<thead>
<tr>
<th>R_ρ</th>
<th>Nu_ρ</th>
<th>γ_0</th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>5.48</td>
<td>0.45</td>
<td>0.16</td>
<td>-11.61</td>
</tr>
<tr>
<td>4.0</td>
<td>13.3</td>
<td>0.49</td>
<td>0.27</td>
<td>-25.7</td>
</tr>
<tr>
<td>1.5</td>
<td>73.2</td>
<td>0.58</td>
<td>0.56</td>
<td>-217.31</td>
</tr>
</tbody>
</table>

At high density ratio (top of figure 4), in the absence of lateral gradients, only the fingering mode remains. The presence of a lateral gradient introduces two additional regions of instability, one oscillatory and one direct, both confined to large vertical and horizontal scales (i.e., small k, l). As expected, lateral gradients break the symmetry of the solutions, since the $k\phi$ terms in (2.13) distinguish between positive and negative k perturbations. The direct mode corresponds to a lateral intrusion which typically grows on a time scale of about 30 hours, with a horizontal scale of the order of a kilometer and vertical scale of a few metres (i.e., with a slope of the order of ϕ).

For an intermediate density ratio ($R_\rho = 4$, middle panels of the figure), the gravity waves of the collective instability appear at a range of vertical and horizontal scales starting at $l = 0.055$, $k = 0.06$ (a physical size of about a metre in each direction), with a growth time scale of about 30 hours. The lateral gradient strongly modifies the gravity waves, increasing both their maximum growth rate and the size of the instability region for negative k values, while suppressing growth for positive k. As with $R_\rho = 7$, the lateral gradient also triggers a direct intrusive mode at large horizontal scales.

Finally, at low density ratios the system is dominated by the collective instability (oscillatory) and the γ- (direct) instability, and is now unstable to a continuous range of modes on both large and small horizontal and vertical scales. At the scales for which the mean-field theory is valid ($k \ll 1$), the collective instability grows fastest, most unstable on scales both horizontally and vertically, and with a growth time scale around two hours regardless of the presence of a lateral gradient ($\phi = 0.01$). For comparison, a γ-mode of the same vertical scale grows at roughly a third this rate.

Figure 4 shows the growth rate of various modes in our theory at low density ratio ($R_\rho = 1.5$) and in the presence of lateral gradients ($\phi = 0.01$). Also shown are the growth rates of the collective instability of [Stern et al. (2001)], of the γ-instability of [Radko (2003)], and of the intrusive instability of [Walsh & Ruddick (1995), absent Reynolds stresses]. For a horizontally invariant perturbation ($l = 0$, equivalent to a domain width of $2\pi/l \to \infty$), the mean-field theory matches Radko’s γ-instability. For perturbations with moderate horizontal scales ($2\pi/l = 200d$, approximately two metres in dimensional terms), the unified theory predicts the presence of gravity waves with similar vertical scales and recovers the collective instability. As the vertical wavelength decreases, the mode gets flatter, and becomes a γ-mode. At the largest horizontal scales ($2\pi/l = 2 \cdot 10^5d$, about two kilometers), our theory recovers the growth rate of intrusive modes from [Walsh & Ruddick (1995)].

Using this unified formalism, we have therefore demonstrated how the dominant type of large-scale instability in salt fingering systems depends strongly, not only on the scale of the perturbations considered, but also on the background density ratio. Field observations [You (2002)] reveal that R_ρ can vary significantly in the ocean. In nearly unstable regions ($R_\rho \to 1$), the collective and γ-instabilities control the dynamics of the system (also see
Predicted real part of growth rates for the fastest growing perturbations, where colour is scaled to $\log \text{Re}(\lambda)$. Only positive values are shown; the region is left white if no modes grow. The horizontal axis shows vertical wavenumber, and the vertical axis shows the logarithm of horizontal wavenumber to capture the broad range of expected scales. This particular display choice yields these characteristic “flower-plots.” The left-hand column shows results in the absence of lateral gradients ($\phi = 0$) while the right-hand column shows results for a typical oceanic value of $\phi = 0.01$. In each of the six figures, regions surrounded by a dark contour show oscillatory behaviour, by contrast with the direct modes. For example, the symmetric “bulbs” at high l are direct modes, corresponding to the growth rate of individual fingers. Top: High density ratio ($R_0 = 7$). Middle: Midrange density ratio ($R_0 = 4$). Bottom: Low density ratio ($R_0 = 1.5$).
Figure 5. Comparison of the real component of projected growth rates between theories at $Pr = 7$, $\tau = 1/100$, for $R_e = 1.5$ and $\phi = 0.01$. The $l = 0$ ($2\pi/l = \infty$) mode growth rate is identical to the one predicted by the γ-instability of Radko (2003); the remaining lines have horizontal perturbation wavelengths of $200d = 1.8$ m and $200000d = 1.8$ km. The mean-field theory captures both the collective instability at large vertical scales and the γ-instability at small vertical scales, and matches well with the intrusive instability at the largest scales.

PAPER II), but as the system becomes more strongly stratified, these modes disappear and lateral gradients emerge as the dominant factor in the creation of large-scale structures.

5. Discussion and Conclusions

5.1. Turbulent flux laws

The simulations of §3.2 are of direct relevance to the problem of parameterising double-diffusive mixing in the ocean. These problems arise in basin-scale ocean circulation models (Gargett & Holloway 1992; Zhang et al. 1998; Merryfield et al. 1999) and in fine-scale studies focusing on the dynamics of intrusions, internal waves, and thermohaline staircases (Walsh & Ruddick 2000; Simeonov & Stern 2004; Stern & Simeonov 2002; Radko 2005). While several attempts have already been made to deduce the small domain flux laws from numerical simulations (Shen 1995; Stern et al. 2001; Stern & Simeonov 2005; Radko 2005), the computational restrictions in early studies precluded direct treatment of the oceanographic case (characterised by three-dimensional dynamics, $Pr=7$, $\tau = 0.01$). Instead, simulations were either two-dimensional or employed diffusivity ratios significantly higher than the heat-salt value of 0.01. The double-diffusive flux laws were deduced by extrapolation of the numerical results obtained in the computationally accessible regime—an approach clearly requiring a posteriori validation. The simulations summarised in table 1 are the first DNS that meet the challenge of solving the actual heat/salt problem in three dimensions. A comparison of these results with earlier studies reveals a good qualitative agreement with earlier estimates. In retrospect, it is perhaps surprising to see how well the former educated guesses of flux laws (Schmitt 1973; Stern et al. 2001) captured the pattern of heat/salt diffusivities as a function of density ratio.

The comparison with oceanographic field measurements is more ambiguous since small-scale mixing in the ocean is driven by a combination of double-diffusion and turbulence—their relative contribution is uncertain and much debated. Nevertheless, the careful analysis of the NATRE (North Atlantic Tracer Release Experiment) data set by St. Laurent & Schmitt...
made it possible to evaluate the salt finger diffusivities directly from observations. The estimated salt diffusivity is characterised by a monotonically decreasing dependence on density ratio, reducing from $K_S = 50 \cdot 10^{-6} \text{m}^2/\text{s}$ at $R_\rho = 1.4$ to $K_S = 10 \cdot 10^{-6} \text{m}^2/\text{s}$ at $R_\rho = 1.8$ (St. Laurent & Schmitt 1999). Once again, these values are in broad agreement with the DNS results summarised in table 1.

Finally, the presented synthetic data (table 1) make it possible to assess the relevance of several hypotheses proposed to explain the physics of equilibration. Most notably, Stern (1969) suggested that the amplitude of salt fingers could be limited by the collective instability, with equilibrium fluxes characterised by values of $A \sim 1$. A similar suggestion was put forward by Kunze (1987), who pointed out that Stern's (1969) criterion is equivalent to specifying the Richardson number based on scales of individual fingers and speculated that an increase in A above unity would be followed by the rapid destruction of fingers by secondary instabilities—an idea most recently revisited by Inoue et al. (2008). Our results, which reveal variation in A by two orders of magnitude, emphasise the limitations of Stern/Kunze hypothesis and motivate the search for alternative conceptual models.

5.2. Large-scale instabilities and implications for the formation of thermohaline staircases

In this paper, we have treated three proposed mechanisms for large-scale instability in salt fingering systems, unifying under one framework what had previously been studied in isolation (Walsh & Ruddick 1995; Stern et al. 2001; Radko 2003). Note that a related approach to the problem, considering the effect of the Richardson number on the fluxes and focussing on thermohaline interleaving rather than the oscillatory modes of the collective instability, may be found in the recent work of Smyth & Ruddick (2010). In our work, as in theirs, considering all instability mechanisms in a single formalism opens the possibility of comparing the growth rates of the various mean-field modes to one another and establishing the dominant ones in each region of parameter space. Furthermore, using the realistic flux laws discussed above, we are now able to give robust quantitative predictions for the presence and growth rates of each mode individually.

For the heat-salt system, we find that no single one of the proposed instability mechanisms is expected to dominate in all fingering-unstable regions of the ocean. At high density ratio ($R_\rho \geq 7$), for example, the Stern number drops below one and only lateral intrusions may be destabilised. As shown in 14 intrusive modes with horizontal scales on the order of a kilometer and vertical scales of a few metres are expected to grow on a time scale of about 30 hours. As the density ratio decreases below seven, gravity-wave modes are also destabilised, growing fastest at horizontal and vertical scales of a few metres. The relative growth rates of the gravity waves and the intrusive modes depend sensitively on their spatial extent and on the slope of the isothermal contours (ϕ) with respect to the vertical, in a manner which can be evaluated through our theory. Finally, when the background stratification is close to neutral stability, which is the case for most fingering regions of the ocean, γ-modes are also unstable and grow on similar time scales as the gravity waves—on the order of a few hours, much faster than the intrusive modes.

These findings also enable us to place constraints on existing theories for the formation of thermohaline staircases. Indeed, all three mean-field modes of instability have been proposed to generate these structures in the process of their nonlinear development (Walsh & Ruddick 1995; Stern et al. 2001; Radko 2003). However, it is important to note that staircases are typically only observed to exist in very low density ratio environments ($R_\rho < 2$, see Schmitt 1981). We find that in this parameter regime (see figure 5), intrusions grow one to two orders of magnitude slower than gravity waves or γ-modes unless lateral gradients are exceptionally strong (which could happen in some regions of the
Mediterranean outflow, for example). This limits the relevance of intrusive modes when applied to the formation of staircases in the bulk of the thermocline. We also find that gravity-wave modes grow faster than γ-modes on all spatial scales for which mean-field theory is applicable (vertical wavelength greater than about 100d, see Appendix). This should a priori point to the collective instability as the mechanism responsible for layer formation.

However, the aforementioned correspondence between the locations of observed oceanic staircases ($R_\rho < 2$) and interval of strongly decreasing $\gamma^\text{tot}(R_\rho)$ is too remarkable to be dismissed. In addition, the only existing numerical simulation to date for which staircase formation has been observed (Radko 2003) has unambiguously identified a γ-mode as the staircase precursor. For these reasons, the γ-instability could prove to be just as important as a generating mechanism for these large-scale structures. At this point, large-scale numerical simulations are the only avenue towards further progress, an avenue we follow in part II of this paper.

A.T., P.G. and T.R. are supported by the National Science Foundation, NSF-093379 and NSF-0807672, and T.R. is supported by an NSF CAREER. S.S. was supported by grants from the NASA Solar and Heliospheric Program (NNG05GG69G, NNG06GD44G, NNX07A2749). The simulations were run on the Pleiades supercomputer at UCSC, purchased using an NSF-MRI grant. Computing time was also provided by the John von Neumann Institute for Computing. We thank Gary Glatzmaier for many helpful discussions and for his continuous support.

Appendix A. Numerical determination of flux laws

A.1. Description of the numerical algorithm

We measure the nondimensional turbulent fluxes of heat and salt as functions of the density ratio using the following numerical algorithm. We solve the original set of equations (2.1a–2.1d) for homogeneous fingering convection using, as explained in §2.1, triply-periodic boundary conditions for all perturbations, e.g.

$$T(x, y, z, t) = T(x + L_x, y, z, t) = T(x, y + L_y, z, t) = T(x, y, z + L_z, t), \quad (A\, 1)$$

where (L_x, L_y, L_z) defines the dimensions of the computational box (in units of d). Note that in these units the global Rayleigh number of a simulation is equal to L_z^4. In this section, all quantities refer to the full field containing all scales (by contrast with §2.2).

We use a spectral algorithm based on the classical Patterson-Orzag method (Canuto et al. 2007) widely used for simulations of homogenous turbulence. Nonlinear products are evaluated on a grid in physical space, and the 3/2-rule is used to avoid aliasing errors (for reference, N grid points in a coordinate direction corresponds to Fourier modes up to wavenumbers of $(2/3)N$ in that direction). Note that our simulation is a Direct Numerical Simulation (DNS), with no subgrid scale model. A third order, semi-implicit Adams-Bashforth / Backward-Differencing algorithm (Peyret 2002) is used for time-stepping. All diffusive terms are treated implicitly, while the advection terms are explicitly treated. The above time-stepping method was chosen since it offers a relatively large stability domain that includes a part of the imaginary axis at a comparatively low cost. In order to guarantee numerical stability, the time step is adjusted dynamically. The code was designed to run efficiently on massively-parallel supercomputers and employs a transpose-based parallel transform algorithm (Stellmach & Hansen 2008).
A.2. Experimental protocol for determination of fluxes

We are primarily interested in the high-Rayleigh number limit, where for fixed fluid parameters Pr and \(\tau \) the transport properties depend only on the background density ratio \(R_0 \). This implies the need to use a reasonably tall computational box (\(L_z \gg 1 \) in units of \(d \)). Our simulations must also permit a large enough number of fingers to exist in the horizontal directions to provide good statistical estimates of the turbulent fluxes. On the other hand, the domain size should be small enough to suppress any secondary large-scale instabilities, which would drive the local density ratio \(R_\rho \) away from the background \(R_0 \) and modulate the turbulent fluxes we are trying to measure. After a careful study of the outcome of a series of simulations, further detailed below, we found that a computational domain of size \(5 \times 5 \times 10 \) in units of the “fastest growing wavelength” (FGW) is a good compromise. The FGW is defined as the wavelength of the fastest growing mode of the fingering instability, and depends on the model parameters Pr, \(\tau \) and \(R_0 \) (see e.g. figure 4 of Schmitt (1979)). We find that it is also a good measure of the width of the fully nonlinear fingers in the parameter regime considered (see figure 8 and discussion below). Finally, note that since large-scale perturbations cannot grow in these “small-box” simulations, \(R_\rho = R_0 \) everywhere in the domain. In this section, we will equivalently use the notation \(R_0 \) or \(R_\rho \) to denote the density ratio since they are the same.

After selecting a value of the density ratio, calculating the corresponding domain size in units of \(d \), and determining an appropriate spectral resolution for the simulations (see below, and table 1), we initialise the calculation with low-amplitude white noise perturbations in \(T \) and \(S \), and let the system evolve with time. Vertical turbulent fluxes of heat and salt, defined as

\[
F_T = \langle wT \rangle, \\
F_S = \langle wS \rangle,
\]

(A 2)

are then computed, where \(\langle ... \rangle \) denotes a volume average over the computational domain. Figure 6 shows time series of \(-F_T \) and \(-F_S \) (note that both fluxes are negative for fingering convection), as well as that of their ratio \(\gamma \), for three values of \(R_\rho \) and for a fluid with the characteristic properties of salty water (\(\tau = 0.01, \) Pr = 7). After a period of exponential growth, the system settles into a statistically stationary finite amplitude state in which all plotted quantities fluctuate about well-defined temporal averages, the state of homogeneous fingering convection. The turbulent fluxes reported in table 1 are measured from temporal means of \(F_T \) and \(F_S \) once the system is in that state.

A.3. The effect of the domain size

In the last part of this appendix, we estimate the optimal box size for calculating local flux laws, while meeting the criteria described above (large enough to provide good statistics, small enough to suppress secondary instabilities). Guidance for our choice can come from simulations in the less computationally demanding parameter regime of Pr = 7, \(\tau = 1/3 \). Figure 7 shows the averaged Nusselt number and \(\gamma \) values for simulations from two domains at these parameters. The first uses a computational domain of approximately \(5 \times 5 \times 8 \) fastest-growing wavelengths (FGW), and the second is much taller, approximately \(6 \times 6 \times 20 \) FGW. Comparison of the turbulent fluxes as a function of \(R_\rho \) shows strong agreement between the two sets of simulations except at the highest and lowest values of the density ratio, where some divergence occurs (discussed below). Overall, these results suggest that the smallest box-size provides sufficient statistics and a large-enough domain...
Figure 6. Time series derived from simulations of fingering convection in the heat-salt system (Pr = 7, $\tau = 0.01$) for the three cases $R_\rho = 1.2$, $R_\rho = 1.5$ and $R_\rho = 2$ (the first and third also shown in figure 1). a) Fluxes $-F_T$ and $-F_S$ (note that for salt fingering F_T and F_S are both negative quantities), b) Turbulent flux ratio γ.

to yield accurate flux laws at most density ratios. Meanwhile, neither set of simulations seem to exhibit any large-scale modes of instability, which also satisfies our requirements.

In order to understand the difference between the turbulent fluxes measured in the two geometries at large density ratio, we examine the geometry of the nonlinear fingers in more detail. For an experimental estimate of the height of fingers in a given simulation, we look to the autocorrelation of the vertical velocity, averaged over all x and y:

$$f(s) = \int \int \int_V \bar{w}(x, y, z) \bar{w}(x, y, z + s) \, dx \, dy \, dz$$

We estimate a typical finger height by the distance s beyond which the autocorrelation function drops below 0.05, and similarly for the typical finger width.

Figure 8 shows the results of these calculations for the small ($5 \times 5 \times 8$ FGW) and medium ($6 \times 6 \times 20$ FGW) domains, using ten sample points separated by 5000 time steps at each value of the background density ratio R_0. By inspection of the results for the medium domain, we find that fingers are typically about 0.5–2 FGW in width, and 4–6 FGW in height, for most values of the density ratio except very close to marginal stability. As a result, both box sizes are sufficiently wide to accommodate many fingers.

The small box is tall enough to contain typically two fingers, while the larger box contains approximately five. Both domains seem to be satisfactory except at the largest values of R_0 (where elevator modes are expected to dominate as $R_0 \rightarrow 1/\tau$), for which the small box is too short to contain even a single finger. Large fluctuations in the Nusselt number result, shown in figure 9.

For the purpose of extending mean-field theory to more difficult parameter ranges (such as Pr $\ll 1$, $\tau \ll 1$ of interest in the astrophysical context), these results provide a valuable guide. For most values of R_0, boxes of no more than $5 \times 5 \times 10$ FGW in height may be expected to provide robust flux averages, while suppressing large-scale structures such as gravity waves that would otherwise swamp the finger field and complicate the averaging process. However, as the background density ratio increases toward a completely stable stratification, taller boxes are necessary to prevent finger overshoot from artificially increasing the measured fluxes.

One final feature bears comment, namely the sharp increase and sudden decrease in finger height variability as R_0 increases above 1.6. This transition, apparently not
Figure 7. Small and medium box average values of the turbulent flux ratio $\gamma(R_0)$ and the logarithm of the Nusselt number $\text{Nu}(R_0)$. For most R_0 values the calculated small-box averages of Nu and γ closely compare with their medium-box counterparts, even where the finger height exceeds the small box height (identifiable in the bottom panel of figure 8). At large R_0, however, the averages diverge, seen in the logarithmic ($\text{Nu}_0 - 1$) values.

A function of box size, corresponds to a kink in the $\gamma(R_0)$ curve (see figure 8), but speculation as to its cause is deferred to future work.

REFERENCES

Figure 8. Numerically determined finger sizes for $\Pr = 7$ and $\tau = 1/3$ over a range of density ratios at two box sizes: small box, $67d \times 67d \times 107.2d$, and medium box, $83.75d \times 83.75d \times 268d$. The single data point available from the S09 simulations is included for comparison. Top: Finger width, demonstrating that both small and medium boxes are wide enough to contain many fingers in the horizontal dimension. In both boxes, finger widths are uniformly of the order of one FGW. Bottom: Finger height, showing the effect of decreasing box size. Points located on the box height line represent sample times at which vertical velocity autocorrelation does not drop below the threshold value (i.e., fingers are taller than the box size); the corresponding numeric labels indicate the number of sampled points that exceeded the box height. In the small box, overshoot occurs in two regions, $R_0 = 1.4–1.6$ and $R_0 \geq 2.6$. In the medium box, fingers only reach the box height for $R_0 \geq 2.9$.

Kluikov, Y.Y.U. & Karlin, L.N. 1995 *Double-Diffusive Convection, Geophysical monograph,*
Figure 9. Nusselt number time series for the medium and small boxes at $R_0 = 2.6$, where fingers overshoot the small box height but are still contained in the medium box height (see figure S). In the medium box, the Nusselt number quickly reaches a stable average with only small fluctuations, whereas the small box series varies widely.

Schmitt, RW, Ledwell, JR, Montgomery, ET, Polzin, KL & Toole, JM 2005 Enhanced

