2-1998

ZEBRA Image Access System

Srilekha Mudumbai

Kshitij Shah

Amit P. Sheth

Wright State University - Main Campus, amit.sheth@wright.edu

Krishnan Parasuraman

Clemens Bertram

Follow this and additional works at: http://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation


http://corescholar.libraries.wright.edu/knoesis/807

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
ZEBRA Image Access System
Srilekha Mudumbai, Kshitij Shah, Amit Sheth, Krishnan Parasuraman, Clemens Bertram
Large Scale Distributed Information Systems (LSDIS) Lab
Department of Computer Science, University of Georgia
http://lsdis.cs.uga.edu/

The ZEBRA system, which is part of the VisualHarness platform for managing heterogeneous data, supports three types of access to distributed image repositories: keyword based, attribute based, and image content based. A user can assign different weights (relative importance) to each of the three types, and within the last type of access, to each of the image properties.

The Image based access component (IBAC) supports access based on computable image properties such as those based on spatial domain, frequency domain or statistical and structural analysis. However, it uses a novel black box approach of utilizing a Visual Information Retrieval (VIR) engine to compute corresponding metadata that is then independently managed in a relational database to provide query processing involving image features and information correlation. That is, we overcome the difficulties in using the feature vectors that are proprietary to a VIR engine, as we do not require any knowledge of the internal representation or format of the image feature used by a VIR engine. IBAC also gives the user an option of combining any of the image properties. Tests focusing on the quality of the results obtained using the black box approach, when compared to the results obtained by the VIR used by the black box approach, are encouraging. Furthermore, unlike VIRs, our metadata-based approach supports access to distributed repositories of images (in addition to text, semi-structured documents and structured databases).

Three Component Architecture

A demonstration can be found at: http://lsdis.cs.uga.edu/infoharness/scenario
Related publications can be found at http://lsdis.cs.uga.edu/publications/info-publications.html
This research was made possible, in part, by a software donation by Virage, Inc.