Spatiotemporal and Thematic Semantic Analytics

Matthew Perry

Wright State University - Main Campus

Follow this and additional works at: http://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation
http://corescholar.libraries.wright.edu/knoesis/975

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Spatiotemporal and Thematic Semantic Analytics

Matthew Perry
PhD. Student
Kno.e.sis Center, Wright State University
North Korea detonates nuclear device on October 9, 2006 near Kilchu, North Korea
Using named relationships to connect thematic entities with spatial locations in a variety of meaningful ways (different contexts)
Temporal Properties of Paths

Which soldiers were members of Platoon_45 during the interval [5, 15]?

Which soldiers were members of Platoon_45 at the same time?
Example: Bioterrorism

After the Battle

Near in Space
• New types of applications exploiting named relationships between entities (semantic graphs)
 – Data Mining – Link Mining, Graph Mining
 – Semantic Web – Semantic Analytics
 • Analysis of relationships in Large RDF graphs
 • Detecting Conflict of Interest, Collaboration, Insider Threat Problem
Two entities e_1 and e_n are semantically connected if there exists a sequence $e_1, P_1, e_2, P_2, e_3, \ldots, e_{n-1}, P_{n-1}, e_n$ in an RDF graph where $e_i, 1 \leq i \leq n$, are entities and $P_j, 1 \leq j < n$, are properties.

[Diagram showing semantic connectivity between entities.]
Semantic Similarity

- Two entities e_1 and f_1 are semantically similar if there exist two semantic paths $e_1, P_1, e_2, P_2, e_3, \ldots, e_{n-1}, P_{n-1}, e_n$ and $f_1, Q_1, f_2, Q_2, f_3, \ldots, f_{n-1}, Q_{n-1}, f_n$ semantically connecting e_1 with e_n and f_1 with f_n, respectively, and that for every pair of properties P_i and Q_i, $1 \leq i < n$, either of the following conditions holds: $P_i = Q_i$ or $P_i \subseteq Q_i$ or $Q_i \subseteq P_i$ (\subseteq means rdf:subPropertyOf).

- We say that the two paths originating at e_1 and f_1, respectively, are semantically similar and thus so are the entities e_1 and f_1.

![Diagram showing relationships between entities and properties]

- The diagram illustrates the relationships between entities and properties, with arrows indicating the direction of properties such as `purchased` and `paidby`. The entity `Passenger` is connected to `Ticket` and `Corporate Account`, and the names `Bill`, `Fred`, and `Smith` are associated with these entities. The property `lname` connects these names to the respective entities.
Spatial Relationship

- Position_1
 - Held_position: [2, 10]
 - Employed_unit: 101st Airborne
 - Held_position: [3, 7]
 - Member_of: Position_2

- Position_3
 - Held_position: [4, 12]
 - Employed_unit: 9th SS Panzer
 - Member_of: Axis

Temporally...

- Soldier_1
 - Trained_at: [2, 6]
 - Member_of: 101st Airborne
 - Specializes_in: Explosives

- Soldier_2
 - Trained_at: [8, 10]
 - Employed_unit: Camp Claiborne

- Soldier_3
 - Trained_at: [1, 5]
 - Member_of: 82nd Airborne

- Soldier_4
 - Member_of: Camp Claiborne

- Soldier_5
 - Employment details not explicitly shown

- Soldier_6
 - Member_of: 82nd Airborne

- Soldier_7
 - Member_of: Camp Claiborne

Thematic Relationship

- Employment and Training of Soldiers
- Position and Unit Assignment
- Specialization in Explosives
- Training Locations

Knowledge Enabled Information and Services Science
Spatial Relationships Between Entities

Examples:

– Which Military Units have spatial extents which are within 20 miles of (48.45° N, 44.30° E) in the context of Battle participation?

– Which infantry unit’s operational area overlaps the operational area of the 3rd Armored Division?

Quantitative Relationships

Qualitative Relationships
Temporal Relationships Between Entities

Examples:

- Which Speeches by President Roosevelt were given within one day of a major battle?

- Who were members of the 101st Airborne during November 1944?

Quantitative Relationships

Qualitative Relationships
Current Work

- Define a Domain-independent Ontology which integrates Spatial and Thematic Knowledge
 - Allows exploiting the flexibility and extensibility of Semantic Web data models
 - Can deal with incompleteness of information on the web
- Incorporate temporal metadata into this model
- Identify and formalize basic spatial and temporal relationship-based query operators which complement current thematic operators of SemDis

Upper-level Ontology modeling Theme and Space

Final Classification of Domain Classes depends upon the intended application

Occurrent: Events – happen and then don’t exist
Continuant: Concrete and Abstract Entities – persist over time
Named_Place: Those entities with static spatial behavior (e.g. building)
Dynamic_Entity: Those entities with dynamic spatial behavior (e.g. person)
Spatial_Occurrent: Events with concrete spatial locations (e.g. a speech)
Spatial_Region: Records exact spatial location (geometry objects, coordinate system info)

occurred_at located_at

rdfs:subClassOf property
Knowledge Enabled Information and Services Science

Occurrent

Continuant

Named Place

Dynamic Entity

Spatial Region

Spatial Occurrent

Person

City

Politician

Soldier

Military Unit

Military Event

Battle

Bombing

Vehicle

assigned_to

on_crew_of

used_in

gives

participates_in

located_at

occurred_at

Domain Ontology

Upper-level Ontology

rdfs:subClassOf used for integration

rdfs:subClassOf relationship type

Knowledge Enable
Specifies a *type* of connection between resources in the thematic dimension of our ontology.

Schema

```
Person: 'John Smith' on_crew_of Military_Vehicle 'B24#123' used_in Bombing

Path Template
Person.on_crew_of.Military_Vehicle.used_in.Bombing

'John Smith'.on_crew_of.Military_Vehicle.used_in.Bombing
```
\[\rho\text{-theme} (G, t_c) \rightarrow \{ p_t \} \]

Example: find all Bombing events connected to ‘John Smith’ through a vehicle participation context

\[\rho\text{-theme} (G, \text{‘John Smith’}.on_crew_of.Military_Vehicle.\ used_in.Bombing) \]

Result

‘John Smith’.on_crew_of.‘B-24#123’.used_in.‘Bombing#456’
‘John Smith’.on_crew_of.‘B-24#123’.used_in.‘Bombing#789’

G = temporal RDF Graph, tc = thematic context, \(p_t \) = thematic context instance
Thematic Contexts Linking Non-Spatial Entities to Spatial Entities

- E1: Soldier
 - assigned_to: E8: Military_Unit
 - occurred_at: E5: Battle
 - located_at: E4: Address
- E2: Soldier
 - lives_at: E6: Address
 - located_at: E4: Address
- E3: Soldier
 - lives_at: E6: Address
 - located_at: E4: Address
- E4: Address
- E5: Battle
- E6: Address
- E7: Battle
- E8: Military_Unit
 - participates_in: E5: Battle
 - assigned_to: E2: Soldier

Named Places | Spatial Occurrents | Dynamic Entities
• Use Temporal RDF Graphs defined by Gutiérrez, et al1
• Models Absolute Time
• Considers time as a discrete, linearly-ordered domain
• Associate time intervals with statements which represent the valid-time of the statement
 – Essentially a quad instead of a triple

1 Claudio Gutiérrez, Carlos A. Hurtado, Alejandro A. Vaisman: \textit{Temporal RDF}. ESWC 2005: 93-107
Example Temporal Graph: Platoon Membership

- E1: Soldier assigned to [1, 10]
- E2: Platoon
- E3: Platoon assigned to [11, 20]
- E4: Soldier assigned to [5, 15]
- E5: Soldier assigned to [5, 15]
• Provide a means to query about spatial, thematic, and temporal properties/relationships of all entities

• Path Query in the thematic dimension
 – Thematic Context

• Associate spatial region with a path

• Associate temporal interval with a path

• Query operators based on properties of and relationships between associated spatial regions and temporal intervals
ρ-spatial_extent (G, {p_t}) → {p_t, sr}

Retrieves the Spatial Region connected (through occurred_at or located_at) to the terminating Spatial Entity of the context instances

Example: Where were the battles in which the ‘101st Airborne Division’ fought?

ρ-spatial_extent (G, ρ-theme (G, ‘101st Airborne Division’.participates_in.Battle))

Result

‘101st Airborne Division’.participates_in.
‘Operation Market Garden’, ‘Geom#123’

G = temporal RDF Graph, p_t = thematic context instance, sr = spatial region
Temporal Properties of Context Instances

Soldier#123

assigned_to:[3, 12]

Platoon#456

assigned_to:[6, 20]

Soldier#789

Intersection [6, 12]

Range [3, 20]
\[\rho\text{-temporal}_intersect \left(\{p_t\} \right) \rightarrow \{p_t, [t_1, t_2]\} \]

Retrieves the interval during which the entire path is valid

Example: Which Soldiers were members of the ‘1st Armored Division’ at the same time?

\[\rho\text{-temporal}_intersect \left(\rho\text{-theme} \left(G, \text{Soldier.assigned_to.} \text{‘1st Armored Division’}.\text{assigned_to.} \text{Soldier} \right) \right) \]

\text{Result}

‘Fred Smith’.\text{assigned_to.}’1\text{st Armored Division’}.\text{assigned_to.} ‘Bill Jones’, [1941:04:15, 1943:02:30]

\[p_t = \text{thematic context instance, } [t_1, t_2] = \text{temporal interval} \]
(Thematic Context Instance t_p, Temporal Interval $[t_i, t_j]$, Spatial Region sr)

Identify 6 major Spatiotemporal Relationship Queries which can be answered by combining previously defined operators
Example: When did the 101st Airborne Division come within 10 miles of the 1st Armored Division in the context of Battle participation?

\[S_1 \leftarrow \rho\text{-spatial}_\text{extent} (G, \rho\text{-theme} (G, '101st Airborne Division', participates_in.Battle)) \]

\[S_2 \leftarrow \rho\text{-spatial}_\text{extent} (G, \rho\text{-theme} (G, '1st Armored Division', participates_in.Battle)) \]

\[\text{ANS} \leftarrow \rho\text{-temporal}_\text{intersect} (\rho\text{-spatial}_\text{eval} (S_1, S_2, \text{distance} (S_1, S_2) \leq 10 \text{ miles})) \]
Spatiotemporal Semantic Associations

- Define setting as a **region of space** in combination with an **interval of time**
- How is entity X related to Spatial setting S? \(\rho (\text{entity}, \text{setting}) \)

How is Group 1 connected to the setting of the expected attack?
How are entity X and entity Y related w.r.t Spatial setting S?
\[\rho \text{ (entity, entity, setting)} \]

How are Group 1 and Group 2 connected with respect to the location of the crime?
• Idea of **Virtual Links** between entities based on Spatiotemporal information

• Possible definition of **rules** to define a virtual link type
 – **Collaboration**: entity X and Y are in close ST proximity more often than a given threshold
 – **Knows**: entity X and Y are in close ST proximity regularly
• How do temporal relationships affect association semantics
 – 2 works_for relationships (overlapping times, disjoint times, etc)

• Complex queries based on all 3 dimensions
 – Which location is the most likely storage facility for exfiltrated weapon material
 • Thematic (correct capabilities, linked to correct people)
 • Spatial (where was the material last seen)
 • Temporal (how long can the material stay out of storage)