1-15-2008

Semantic Sensor Web

Cory Andrew Henson

Wright State University - Main Campus

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation

https://corescholar.libraries.wright.edu/knoesis/985
Semantic Sensor Web

Talk at: Semantic Interoperability Community of Practice (SICoP)
Sensor Standards Harmonization WG
January 15, 2008

Cory Henson
Kno.e.sis Center, Wright State University
1. Motivating Scenario

2. Sensor Web Enablement

3. Semantic Sensor Web

4. Prototype Application
Motivating Scenario

- How do we determine if $A-H = A-L$? (Same time? Same place?)

- How do we determine if $E-H = E-L$? (Same entity?)

- How do we determine if $E-H$ or $E-L$ constitutes a threat?
The Challenge

Collection and analysis of information from heterogeneous multi-layer sensor nodes
Why is this a Challenge?

• There is a lack of uniform operations and standard representation for sensor data.

• There exists no means for resource reallocation and resource sharing.

• Deployment and usage of resources is usually tightly coupled with the specific location, application, and devices employed.

• **Resulting in a lack of interoperability.**
Many diverse sensor data management *application* frameworks were compared, such as:

1. **GSN**
 - Global Sensor Network
 - Digital Enterprise Research Institute (DERI)

2. **Hourglass**
 - An Infrastructure for Connecting Sensor Networks and Applications
 - Harvard
 - http://www.eecs.harvard.edu/~syrah/hourglass/

3. **IrisNet**
 - Internet-Scale Resource-Intensive Sensor Network Service
 - Intel & Carnegie Mellon University
 - http://www.intel-iris.net/

However, it soon became obvious that these application frameworks provided only localized interoperability and that a standards-based framework was necessary.
1. Motivating Scenario

2. Sensor Web Enablement

3. Sensor data evolution hierarchy

4. Prototype Application
What is Sensor Web Enablement?

- The **interoperability framework** for accessing and utilizing sensors and sensor systems in a space-time context via Internet and Web protocols
- A set of **web-based services** may be used to maintain a registry of available sensors.
- The **same** web technology standard for describing the sensors’ outputs, platforms, locations, and control parameters should be used **all across**.
- This enables the necessary **interoperability**.
- This standard encompasses **specifications** for interfaces, protocols, and encodings that enable the use of sensor data and services.

http://www.opengeospatial.org/projects/groups/sensorweb
Constellations of heterogeneous sensors

Vast set of users and applications

OGC Sensor Web Enablement

http://www.opengeospatial.org/projects/groups/sensorweb
SWE Languages and Encodings

- **Observations & Measurements (O&M)**
- **SensorML (SML)**
- **GeographyML (GML)**
- **TransducerML (TML)**

- Information Model for Observations and Sensing
- Sensor and Processing Description Language
- SWE Common Data Structure And Encodings
- Multiplexed, Real Time Streaming Protocol

1. Motivating Scenario

2. Sensor Web Enablement

3. Semantic Sensor Web

4. Prototype Application
What is the Semantic Sensor Web?

- Adding semantic annotations to existing standard Sensor Web languages in order to provide semantic descriptions and enhanced access to sensor data

- This is accomplished with *model-references* to ontology concepts that provide more expressive concept descriptions

- For example, using model-references to link SML annotated sensor data with concepts within an OWL-Time ontology allows one to provide temporal semantics of sensor data.
XLink

- Used for describing links between resources in XML documents.
- Several important attributes within XLink include:
 - **type**: describes the element type of the link (i.e., simple, extended)
 - **role**: semantic attribute that describes the meaning of resources within the context of a link
 - **href**: locator attribute that supplies the URI needed to find a remote resource

Other used Model Reference in Semantic Annotations

- **SAWSDL**: Defines mechanisms to add semantic annotations to WSDL and XML-Schema components (*W3C Recommendation*)
- **SA-REST**: Defines mechanisms to add semantic annotations to REST-based Web services.

W3C, XML Linking Language, http://www.w3.org/TR/xlink
Model Reference (SensorML)

Semantic Annotations (model-references) to temporal ontology

Instant

Interval

OWL-Time Ontology

 Timestamp: start time

 Timestamp: end time

 Lat/Long coordinates

 Timestamp: 2002-11-10T15:31:00.0Z

 Timestamp: 2002-11-10T15:34:31.0Z

 Lat: 39.779535, Long: -84.063821
Semantic Temporal Query

- Model-references from SML to OWL-Time ontology concepts provides the ability to perform semantic temporal queries
- Supported semantic query operators include:
 - **contains**: user-specified interval falls wholly within a sensor reading interval (also called **inside**)
 - **within**: sensor reading interval falls wholly within the user-specified interval (inverse of **contains** or **inside**)
 - **overlaps**: user-specified interval overlaps the sensor reading interval
- Example SPARQL query defining the temporal operator ‘within’

```
SELECT ?interval
WHERE {
    ?interval time-entry:ends ?e .
    ?b time-entry:inXSDDateTime ?b_datetime .
    ?e time-entry:inXSDDateTime ?e_datetime .

    FILTER (
        xsd:dateTime("2005-11-10T01:00:00.00") < xsd:dateTime(?b_datetime) &&
        xsd:dateTime("2008-11-10T01:00:00.00") > xsd:dateTime(?e_datetime)
    ) .
}
ORDER BY ASC(?b_datetime)
```
Knowledge
- Object-Event Relations
- Spatiotemporal Associations
- Provenance Pathways

Information
- Entity Metadata
- Feature Metadata

Data
- Raw Phenomenological Data

Ontologies
- Space Ontology
- Time Ontology
- Situation Theory Ontology
- Domain Ontology
Prototyping the Semantic Sensor Web
Prototype Architecture

Data Collection

- Data Source (e.g., YouTube)

Extraction & Metadata Creation

- Video Conversion
- Filtering & OCR
- SML Annotation Generation
- Time & Date information

Storage

- Converted Videos
- SML (XML-DB)
- Ontology (OWL/RDF-DB)

Query

- SML Interface
- Ontology Interface

UI

- Google Maps
- GWT (Java to Ajax)
Temporal Data Extraction

1. Channel Minimal Suppression
 - 8-neighbor median for 'bad' pixels

2. Temporal Minimal Suppression

3. Binarization via adaptive threshold

4. Tesseract OCR engine

Regular Expression parsing
SensorML output

Prototype Application

http://knoesis.wright.edu/library/demos/ssw/prototype.htm
Future Work

• Incorporation of spatial ontology in order to include spatial analytics and query (perhaps with OGC GML Ontology or ontology developed by W3C Geospatial Incubator Group - GeoXG)*

• Explore new datasets, including Buckeyetraffic.org

• Extension of SPARQL with enhanced spatiotemporal query and analytics (including semantic associations)

• Integration of framework with emergent applications, including video on mobile devices running Android OS

• Monitor Semantic Sensor Web page for further progress http://knoesis.wright.edu/projects/sensorweb/

* Kno.e sis/Wright State Univ. is a member of W3C and it's research led to the development of SAWSDL
References

- Amit Sheth et al., SA-Rest: Semantically Interoperable and Easier-to-Use Services and Mashups, IEEE Internet Computing, November/December 2007 (Vol.11, No.6) pp.91-94. DOI: http://doi.ieeecomputersociety.org/10.1109/MIC.2007.133

- W3C, Time Ontology in OWL, http://www.w3.org/TR/owl-time/
- W3C, Geospatial Incubator Group, http://www.w3.org/2005/Incubator/geo/