A Semantic Situation Awareness Framework for Indoor Cyber-Physical Systems

Pratikkumar Desai
Wright State University - Main Campus
A Semantic Situation Awareness Framework for Indoor Cyber-Physical Systems

Pratikkumar Desai
Monday, 4/29/2013

Dissertation Committee

<table>
<thead>
<tr>
<th>Director</th>
<th>Dr. Kuldip Rattan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-Director</td>
<td>Dr. Amit Sheth</td>
</tr>
<tr>
<td></td>
<td>Dr. Marian Kazimierczuk</td>
</tr>
<tr>
<td></td>
<td>Dr. Frank Zhang</td>
</tr>
<tr>
<td></td>
<td>Dr. Guru Subramanyam</td>
</tr>
</tbody>
</table>
Embedded systems
e.g. thermostat

Networked embedded system
e.g. wireless sensor networks

Cyber-physical system
e.g. Intelligent traffic management systems
Cyber-Physical Systems

Cyber : Computation, communication, and control that are discrete, logical, and switched.

Physical : Natural and human-made systems governed by the laws of physics and operating in continuous time.

Cyber-Physical Systems (CPS) : Systems in which the cyber and physical systems are tightly integrated at all scales and levels

http://www.cs.binghamton.edu/~tzhu/
CPS Examples

- Disaster Management
- Military Drones
- Air Traffic Control
- Traffic Management

- Smart Grid
- Smart Home
- Remote Patient Monitoring
Motivation & Challenges
(Situation awareness)
Motivation

Mobile sensing platform

Situation: Actual fire at chair
Event: Fire from temperature and CO₂ data

Mobile sensing platform
Motivation

Mobile sensing platform

Uncertainty: Sensor data
e.g. Due to resolution, calibration or robustness of sensors
Incomplete domain knowledge

e.g. Unknown sources in the environment

Mobile sensing platform
Context
“is a physical phenomenon, measured using sensors, and product of an event”

Contextual situation awareness:
“is a process of comprehending meaning of environmental context in terms of events or entities”

Location awareness:
“is a process of identifying objects from raw spatial information and their relationship with the ongoing events”

Context
Environmental context
e.g. temperature, CO₂, heart rate

Location
e.g. coordinates

Contextual situation awareness

Location awareness
Contextual situation awareness + Location awareness

- Raw environmental sensor data
- Raw spatial information
- Entities (High level abstractions)
- Object-Entity relationships
- Situation

- High-level abstractions (Entities) e.g. Fire, Dry-ice
- Low-level abstractions (Qualities) e.g. High temperature, Low CO2
- Raw Sensor Data (Environmental context)
- Indoor location Coordinate e.g. (300,200,100)
- Relative distance estimation
- PointOfInterest (Indoor objects) e.g. Fireplace, Chair
Contextual Situation Awareness
IntellegO

Observation process
- Raw sensor data
- Qualities
- Entities

Perception process

- Abductive reasoning
- Crisp abstractions

Domain Knowledge Base

- Temperature
 - LowTemp
 - HighTemp

- CO₂
 - LowCO₂
 - HighCO₂

- Quality-types
 - LowTemp
 - HighTemp
 - LowCO₂
 - HighCO₂

- Entities
 - Fire
 - DryIce
 - RoomHeater
 - NormalCondition

http://wiki.knoesis.org/index.php/Intellego
Temperature: 500°C HighTemp
CO2: 1010 ppm HighCO₂

\[io:entity \equiv \exists io:inheresIn. \{HighTemp\} \]
\[\land \exists io:inheresIn. \{HighCO₂\} \]
\[\equiv \{Fire, RoomHeater\} \land \{Fire, DryIce\} \]
\[\equiv \{Fire\} \]

Temperature: 500°C HighTemp
CO2: 999 ppm LowCO₂

\[\equiv \{Fire\} \]
Motivation

Mobile sensing platform

Uncertainty: Sensor data
 e.g. Due to limitation, calibration or robustness of sensors

Incomplete domain knowledge
 e.g. Unknown sources in the environment
Fuzzy abstractions

\[\mu_{\text{LowCO}_2}(a) = \frac{1200 - 1160}{400} = 0.1 \]

\[\mu_{\text{HighCO}_2}(a) = \frac{1160 - 800}{400} = 0.9 \]
Fuzzy abductive reasoning

\[\mu_{Fire}(a) = \mu_{HighTemp}(a) \land \mu_{HighCO_2}(a) \]
\textbf{io: entity}
\[\equiv \{\exists \text{io: inheresIn.}\{\text{HighCO}_2\}\sqcup \exists \text{io: inheresIn.}\{\text{LowCO}_2\}\} \]
\[\sqcap \{\exists \text{io: inheresIn.}\{\text{HighTemp}\}\} \]
\[\equiv \{\{\text{Fire, DryIce}\}\sqcup \{\text{NormalCondition, RoomHeater}\}\} \]
\[\sqcap \{\text{Fire, RoomHeater}\} \]
\[\equiv \{\text{Fire, RoomHeater}\} \]

\[
\mu_{\text{Fire}}(a) = \mu_{\text{HighTemp}}(a) \land \mu_{\text{HighCO}_2}(a)
\]
\[
= \min(1, 0.9)
\]
\[
= 0.9
\]

\[
\mu_{\text{RoomHeater}}(a) = \mu_{\text{HighTemp}}(a) \land \mu_{\text{LowCO}_2}(a)
\]
\[
= \min(1, 0.1)
\]
\[
= 0.1
\]
Evaluation – Contextual Situation Awareness

<table>
<thead>
<tr>
<th>Reasoning approach</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisp abductive reasoning</td>
<td>86 %</td>
<td>78.57 %</td>
<td>73.33 %</td>
</tr>
<tr>
<td>Fuzzy abductive reasoning</td>
<td>94 %</td>
<td>92.85 %</td>
<td>86.66 %</td>
</tr>
</tbody>
</table>
Semantic Web

- Semantic web:
 - Formally define the meaning of information on web.
 - Provide expressive representation, formal analysis of resources.

- Ontology
 - Formally represents knowledge as a set of concepts within a domain and the relationships between pairs of concepts.

- RDF (Resource Description Framework)
 - Graph-based language for modeling of information.
 - Allows linking of data through named properties.

Contextual situation awareness (Semantic modeling)

Observation process
- Raw Sensor Data
- SSN annotated Observations
- Low-level fuzzy abstractions (qualities)

Perception process
- Fuzzy reasoning
- High-level Abstractions (entity)

- SSN Ontology
- Domain Ontology
- Fuzzification Rules
- Fuzzy Inference rules ontology
Indoor Localization
Traditional Indoor Localization Techniques

- Active Badge and Active Bat system.
- RADAR: An In-building RF-based user location and tracking system.
- RFID radar
- Object tracking with multiple cameras
- Computer vision based localization
- Wireless Sensor Network
TDoA (Time Difference of Arrival)

Stage 1: Beacon transmits RF and Us signals together

Stage 2: Listener receives RF signal first at T_{rf} and starts the clock

Stage 3: At T_{us} time US signals is received by Listener

Stage 3: Distance is calculated using ΔT and speed of signals
Trilateration

Number of nodes = 3.

\[d_i^2 = (x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2 \] for \(i = 1, 2, 3 \)

Outlier rejection and Multilateration
The Proposed Algorithm

• Utilizes fusion of RSS (received signal strength) of RF signal and TDoA data for accurate distance estimation.

• The algorithm stages:-
 • RSSI data training
 • Distance estimation
 • Localization

• Uses TDoA as a primary distance estimation technique.
• RSSI data is trained and converted into appropriate distance measurements.
• The proposed algorithm can be used in absence of one or many TDoA links.
Initial Conditions

- Distances between all beacons are known and fixed
Beacon B₁ Transmit Data

RSSI Link
TDoA Link

B₁

R₁₁
T₁₁

B₂

R₁₂

B₃

R₁₃

B₄

R₁₄
Beacon B_2 Transmit Data

RSSI Link

TDoA Link

B_1

B_2

B_3

B_4
Beacon B₃ Transmit Data

RSSI Link

TDoA Link

B₁

B₂

B₃

B₄

L

0 R₂₁ R₃₁ ?
R₁₂ 0 ? ?
R₁₃ R₂₃ 0 ?
? ? ? 0

0 ? ? ?
R₁₂ 0 R₃₂ ?
R₁₃ R₂₃ 0 ?
? ? ? 0

0 ? ? ?
R₁₂ 0 ? ?
R₁₃ R₂₃ 0 ?
? ? ? 0

0 ? ? ? R₁₁ T₁₁
R₁₂ 0 ? ? R₂₂ T₂₂
R₁₃ R₂₃ 0 ? R₃₃ T₃₃
? ? ? 0 ? ?

0 ? ? ?
R₁₂ 0 ? ?
R₁₃ R₂₃ 0 ?
? ? ? 0
Beacon B_4 Transmit Data

0 R_{21} R_{31} R_{41}
R_{12} 0 ? ?
R_{13} R_{23} 0 ?
R_{14} R_{24} R_{34} 0

0 R_{12} R_{32} R_{42}
R_{13} R_{23} 0 ?
R_{14} R_{24} R_{34} 0

B_1

B_2

B_4

0 R_{1L} T_{1L}
R_{12} 0 ? ?
R_{13} R_{23} 0 ?
R_{14} R_{24} R_{34} 0

0 R_{1L} T_{1L}
R_{12} 0 ? ?
R_{13} R_{23} 0 ?
R_{14} R_{24} R_{34} 0

T_{DoA} Link

$RSSI$ Link

L

B_3
Evaluation–Proposed Algorithm

![Graph showing RMS error in position estimation vs. # of Monte Carlo simulations for different methods: TDoA, A= fixed, and A= Trained. The graph illustrates the comparison of these methods across multiple simulations.](image)
Location Awareness
Hierarchical mapping of the indoor environment
Identified POI

\[\equiv \exists inLO: PointOfInterest. \{ inLo: hasXmax \geq 190 \} \]
\[\cap \exists inLO: PointOfInterest. \{ inLo: hasXmin \leq 190 \} \]
\[\cap \exists inLO: PointOfInterest. \{ inLo: hasYmax \geq 570 \} \]
\[\cap \exists inLO: PointOfInterest. \{ inLo: hasYmin \leq 570 \} \]

\[\equiv \{ Sofa _ 1, Chair _ 1, Fireplace _ 1 \} \]
\[\cap \{ Sofa _ 1, Chair _ 1, Fireplace _ 1 \} \]
\[\cap \{ Chair _ 1 \} \]
\[\cap \{ Sofa _ 1, Plant _ 1, Fireplace _ 1, Chair _ 1 \} \]

\[\equiv \{ Chair _ 1 \} \]
Object-entity relationship

Structural Components

Point of Interests

Entities

DrawingRoom-1

Sofa-1

Fireplace-1

Fire

PresenceOfRoomHeater

NormalCondition

HighHeartRate

DrawingRoom

FireplacePOI

Chair-1

ChairPOI

isLocatedIn

hasIndividual

hasApplicableEntity
Evaluation – Location Awareness

Mobile-robot route

Location (a) (190,570)

Location (b) (630,325)

Mobile-robot route

Drawingroom-1

Fireplace-1

Sofa-1

Chair-1

Plant-1
<table>
<thead>
<tr>
<th>Reasoning approach</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisp abductive reasoning</td>
<td>87.5 %</td>
<td>43.75 %</td>
</tr>
<tr>
<td>Fuzzy abductive reasoning</td>
<td>100 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Location aided fuzzy abductive reasoning</td>
<td>100 %</td>
<td>88.89 %</td>
</tr>
</tbody>
</table>

Location independent reasoning

Location aided reasoning

Fireplace
Comprehensive Framework
Comprehensive Framework (System level)

- Indoor Positioning System
 - Semantic Object Identifier
 - Spatial Reasoning
 - Location Awareness

- Contextual Situation Awareness
 - Domain Knowledge
 - Environment Sensors
 - Qualities
 - Fuzzy Abductive Reasoning
 - Fuzzy Abstraction Rules
 - Entities
 - Situation
Comprehensive Framework (Semantic modeling)

- Raw Physical Context Data
- SSN annotated Observations
- Low-level Fuzzy Abstractions (Qualities)
- High-level Abstractions (Entities)
- Optimized Situation

- Raw Location Data
- Semantic Location Identifier
- Indoor Location Ontology

- SSN Ontology
- Domain Ontology
- Fuzzy Abductive Reasoning Rules

Department of Electrical Engineering
Location (a):
(200,250,20)

Location (b):
(400,150,30)

Temp: 150 °C
CO₂: 1120 ppm

Temp: 180 °C
CO₂: 1160 ppm

Object coverage area
Mobile robot path
Object coverage area

Mobile robot path

Fire: 0.80
Heater: 0.20

Location (a): (200, 250, 20)

Fire: 0.90
Heater: 0.10

Location (b): (400, 150, 30)
Fire: 0.80
Heater: 0.20

Location (a): Fireplace

Fire: 0.90
Heater: 0.10

Location (b): Chair

Object coverage area
Mobile robot path
Key Contributions

• Developed a fusion based indoor localization algorithm to achieve accurate spatial information of the sensing platform.
 • Accurate indoor localization algorithm.
 • Surveillance and tracking of mobile robots in indoor environments.
 • Integration of indoor positioning results with virtual world environment.

Related papers:

• An invited journal paper in preparation.
Key Contributions

- Introduced fuzzy abstraction and inference technique to comprehend events via handling the uncertainty in the context information & the ambiguity in the domain knowledge.
 - A journal paper in preparation.

- Developed semantic mapping technique for indoor objects to aid the situational context awareness results via further discriminating not applicable events.

- Developed and deployed a comprehensive situation awareness framework for cyber-physical system.
 - A journal paper in preparation.
Future work

- Richer spatio-temporal relation modeling between indoor objects and entities
- Efficient coverage space for the indoor objects
- Accurate indoor localization via smartphones
Acknowledgements
Questions?