Publication Date


Document Type


Committee Members

Richard Cobb (Committee Member), George Huang (Advisor), James Menart (Committee Member), Michael Oppenheimer (Committee Member), Zifeng Yang (Committee Member)

Degree Name

Doctor of Philosophy (PhD)


The field of FlappingWing Micro Air Vehicles (FWMAV) has been of interest in recent years and as shown to have many aerodynamic principles unconventional to traditional aviation aerodynamics. In addition to traditional manufacturing techniques, MAVs have utilized techniques and machines that have gained significant interest and investment over the past decade, namely in additive manufacturing. This dissertation discusses the techniques used to manufacture and build a 30 gram-force (gf) model which approaches the lower limit allowed by current commercial off-the-shelf items. The vehicle utilizes a novel mechanism that minimizes traditional kinematic issues associated with four bar mechanisms for flapping wing vehicles. A kinematic reasoning for large amplitude flapping is demonstrated namely, by lowering the cycle averaged angular acceleration of the wings. The vehicle is tested for control authority and lift of the mechanism using three servo drives for wing manipulation. The study then discusses the wing design, manufacturing techniques and limitations involved with the wings for a FWMAV. A set of 17 different wings are tested for lift reaching lifts of 38 gf using the aforementioned vehicle design. The variation in wings spurs the investigation of the flow patterns generated by the flexible wings and its interactions for multiple flapping amplitudes. Phase-lock particle image velocimetry (PIV) is used to investigate the unsteady flows generated by the vehicle. A novel flow pattern is experimentally found, namely “trailing edge vortex capture” upon wing reversal for all three flapping amplitudes, alluding to a newly discovered addition to the lift enhancing effect of wake capture. This effect is believed to be a result of flexible wings and may provide lift enhancing characteristics to wake capture.

Page Count


Department or Program

Ph.D. in Engineering

Year Degree Awarded


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Included in

Engineering Commons