Publication Date
2024
Document Type
Dissertation
Committee Members
Mitch Wolff, Ph.D. (Advisor); George Huang, Ph.D. (Committee Member); John Clark, Ph.D. (Committee Member); Christopher Marks, Ph.D. (Committee Member)
Degree Name
Doctor of Philosophy (PhD)
Abstract
It is generally accepted that there exist two types of laminar separation bubbles (LSBs): short and long. The process by which a short LSB transitions to a long LSB is known as bursting. In this research, large eddy simulations (LES) are used to study the evolution of an LSB that develops along the suction surface of the L3FHW-LS at low Reynolds numbers. The L3FHW-LS is a new high-lift, high-work low-pressure turbine (LPT) blade designed at the Air Force Research Laboratory. The LSB is shown to burst over a critical range of Reynolds numbers. Bursting is discussed at length and its effect on transition, vortex shedding, and profile loss development are analyzed in depth. The results of these analyses make one point very clear: the effects of bursting are non-trivial. That is, long LSBs are not just longer versions of short LSBs. They are phenomena unto themselves, distinct from short LSBs in terms of their vortex dynamics, profile loss footprint, time-averaged topology, etc. This work culminates in a demonstration of how, with the aid of unsupervised machine learning, these differences can be leveraged to reduce the energy requirements of steady vortex generator jets (VGJs). Relative to pulsed VGJs, steady VGJs require significantly more energy to be effective but are more realistic to implement in actual application. By tailoring VGJ actuation to LSB type (i.e., actuating differently in response to a long LSB than to a short LSB), it is shown that significant energy savings can be realized.
Page Count
114
Department or Program
Ph.D. in Engineering
Year Degree Awarded
2024
Copyright
Copyright 2024, all rights reserved. My ETD will be available under the "Fair Use" terms of copyright law.
ORCID ID
0000-0003-0991-6800
