Climate change increases vulnerabilities for crop productivity in Pakistan. Water crises are increasing with an increase in temperature and change in precipitation patterns due to climate change which ultimately imposed a threat to the food security of the country. Water is indispensable for all plants to complete life cycle as the unavailability of water at critical growth stages drastically affects the development of the plant. The present pot study was conducted for the estimation of crop coefficient of hybrid wheat for irrigation scheduling at Muhammad Nawaz Shareef University of Agriculture, Multan during two growing seasons 2018-19 and 2019-20. In this experiment, three wheat varieties were used were Hybrid-1 (R26-3-1/DH-16), Hybrid-2(AR 7-5 / ZWB-14), and Galaxy-2013 as treatment. The soil moisture content was maintained between 50 to 100 % available water content (AWC) during both growing seasons. The crop coefficient (Kc) and actual evapotranspiration (Eta) were maximum in galaxy-13 and minimum in hybrid wheat. The grain yield for Hybrid-1, Hybrid-2, and galaxy-13 was 1, 1.5, and 0.6 g plant-1, respectively while the straw output was 4.8, 4.3, and 3 g plant-1, respectively. The harvest index for Hybrid-1, Hybrid-2, and galaxy-13 were 20, 34, and 20% respectively. The water use efficiency (WUE) for Hybrid-1, Hybrid-2, and galaxy-13 was 0.2. 0.3 and 0.1 g plant-1mm-1, respectively. The Hybrid-1 and Hybrid-2 produced more grain yield, straw yield, more spikes, and more grains per spikes and showed more water use efficiency with short plant height as compared to galaxy-13. The results of the study revealed that Hybrid-2 is more water-efficient with low water requirement and it was followed by Hybrid-1. The growing of Hybrid-2 will enhance the wheat yield to meet the food requirements of the increasing population under the climate change scenario with less water.

Article History

Received: April 07, 2021; Accepted: April 12, 2021; Published: June 15, 2022