The Role of K-Ras Gene Mutation in TRAIL-Induced Apoptosis in Pancreatic and Lung Cancer Cell Lines

Document Type


Publication Date




Pancreatic ductal and lung adenocarcinomas are the most common and prevalent types of human neoplasms with a greater than 80% mortality rate. The poor prognosis of both these cancers are likely due to the absence of valid approaches for early detection, the frequency of its metastases at the time of diagnosis, frequent recurrence after surgery, and poor responsiveness to chemotherapy. Most notably, the early development of pancreatic intraepithelial neoplasia and lung lesions is suggested to be the result of a mutation in the K-ras (G12D) oncogene. Tumor necrosis factor-related-apoptosis-inducing-ligand (TRAIL) has been shown to have great potential for the treatment of most human tumor cells, while leaving normal cells unharmed. However, some cancers show resistance to TRAIL treatment, leaving a gap in the understanding of its exact etiology.


TRAIL-induced resistance to cell death was investigated in pancreatic and lung cancer cell lines. Cell survival was determined by SRB and apoptosis by ELISA-based cell death assay. Activation of bid and caspases were evaluated by Western blotting.


Our study demonstrated that TRAIL significantly suppressed cell survival, by inducing apoptosis in a dose-dependent manner, in the pancreatic cancer BxPC-3 (wild type G12) and lung cancer A549 (G12S) cell lines. In contrast, Panc-1 pancreatic and SK-LU-1 lung cancer cell lines, which have a mutated (G12D) K-ras genotype, were resistant to the actions of TRAIL.


This study demonstrates an association between TRAIL resistance to apoptosis in human pancreatic and lung cancer cell lines and G12D K-ras(12) mutation.


DOI: 10.1007/s00280-010-1463-1

Find in your library

Off-Campus WSU Users