YPEL3, a p53-Regulated Gene that Induces Cellular Senescence

Document Type


Publication Date



Cellular senescence, the limited ability of cultured normal cells to divide, can result from cellular damage triggered through oncogene activation (premature senescence) or the loss of telomeres following successive rounds of DNA replication (replicative senescence). Although both processes require a functional p53 signaling pathway, relevant downstream p53 targets have been difficult to identify. Discovery of senescence activators is important because induction of tumor cell senescence may represent a therapeutic approach for the treatment of cancer. In microarray studies in which p53 was reactivated in MCF7 cells, we discovered that Yippee-like-3 (YPEL3), a member of a recently discovered family of putative zinc finger motif coding genes consisting of YPEL1-5, is a p53-regulated gene. YPEL3 expression induced by DNA damage leads to p53 recruitment to a cis-acting DNA response element located near the human YPEL3 promoter. Physiologic induction of YPEL3 results in a substantial decrease in cell viability associated with an increase in cellular senescence. Through the use of RNAi and H-ras induction of cellular senescence, we show that YPEL3 activates cellular senescence downstream of p53. Consistent with its growth suppressive activity, YPEL3 gene expression is repressed in ovarian tumor samples. One mechanism of YPEL3 downregulation in ovarian tumor cell lines seems to be hypermethylation of a CpG island upstream of the YPEL3 promoter. We believe these findings point to YPEL3 being a novel tumor suppressor, which upon induction triggers a permanent growth arrest in human tumor and normal cells.