Determinants of Triad Junction Reformation: Identification and Isolation of an Endogenous Promotor for Junction Reformation in Skeletal Muscle

Document Type


Publication Date


Catalog Record

Catalog Record


The junction of isolated triads can be mechanically broken by passage through a French press and subsequently reformed by incubation of the isolated organelles with certain salts of weak acids (e.g., K cacodylate, K propionate, and K butyrate). In contrast, other salts (e.g., KCI, K phosphate, and K benzoate) are ineffective in promoting triad formation. An endogenous factor obtained from a muscle homogenate acts in the same manner as these artificial compounds. When rabbit skeletal muscle is homogenized in a KCI solution and centrifuged to remove large cellular components and membrane fractions, an endogenous factor is extracted into the high speed supernatant which promotes the reformation of mechanically broken triads. A three-stage purification of this factor has been achieved using: (1) ammonium sulfate fractionation, (2) adsorption chromatography, and (3) molecular sieve chromatography. SDS-PAGE showed that the protein was purified to homogeneity and had a subunit Mr of 34,000 daltons. This protein has the following characteristics: (1) it exists in 0.1 M KCI as a polymeric substance with an estimated Mr = 123,000 on molecular sieve chromatography and a Mr = 155,000 on sedimentation equilibrium; (2) it promotes the formation of triadic vesicles from isolated organelles in a low ionic strength medium; (3) Both this protein and cacodylate share the property of specifically catalyzing the association and aggregation of junctional proteins which had previously been dissolved by neutral detergent and salt; (4) it appears to be identical to an extrinsic constituent of terminal cisternae, which has been described as a protein of M~ = 34K. It is not clear, however, whether this protein is a necessary and integral component of the junctional feet or whether it exerts predominantly a catalytic role in the formation of the triad junction.



Catalog Record