The Digital Earth as Knowledge Engine

Document Type


Publication Date



The Digital Earth [13] aims at developing a digital representation of the planet. It is motivated by the need for integrating and interlinking vast geo-referenced, multi-thematic, and multi-perspective knowledge archives that cut through domain boundaries. Complex scientific questions cannot be answered from within one domain alone but span over multiple scientific disciplines. For instance, studying disease dynamics for prediction and policy making requires data and models from a diverse body of science ranging from medical science and epidemiology over geography and economics to mining the social Web. The naïve assumption that such problems can simply be addressed by more data with a higher spatial, temporal, and thematic resolution fails as long as this more on data is not supported by more knowledge on how to combine and interpret the data. This makes semantic interoperability a core research topic of data-intensive science. While the Digital Earth vision includes processing services, it is, at its very core, a data archive and infrastructure. We propose to redefine the Digital Earth as a knowledge engine and discuss what the Semantic Web has to offer in this context and to Big Data in general.