Document Type

Article

Publication Date

5-1-2021

City

Corvallis

State

OR

Abstract

The national airspace (NAS) will rapidly evolve in the next ten to twenty years. Plans for Advanced Air Mobility (AAM) during that period envision highly automated airspace management systems and electrically powered vehicles. AAM concepts also anticipate limited human roles. The goal of limiting the human role is to minimize the potential for misadventures, yet how the human role is limited needs to be carefully considered in order to also preserve the potential for human successes. The field of resilience engineering (RE) focuses on how systems can change in order to seize an opportunity or withstand an unforeseen challenge. RE methods rely on the use of empirical data to optimize the ability of any system to adapt. RE studies have shown how individual and team initiatives ensure resilient system performance by creating safety through flexibility. Benefits of the RE approach include improved awareness of operational circumstances and how system elements depend on each other, and the ability to allocate limited resources and prepare for surprise. RE offers the ability to account for and incorporate the human role as an essential element in order to ensure NAS systems’ resilient performance. Data on the human contribution to safe and resilient system performance, which is termed “work as done,” are available but are not being considered as the NAS evolves. We present an approach that describes how use of RE can enable the evolving NAS to adapt, and perform, in a resilient manner.


Share

COinS