Publication Date
2010
Document Type
Thesis
Committee Members
Hong Huang (Advisor), Allen Jackson (Committee Member), Ruby Mawasha (Committee Member)
Degree Name
Master of Science in Engineering (MSEgr)
Abstract
JP-8 fuel is easily accessible, transportable, and has hydrogen content essential to solid oxide fuel cell (SOFC) operation. However, this syngas has sulfur content which results in a poisonous hydrogen sulfide that degrades electrochemical activity and causes complete SOFC failure in some cases. The goal is to synthesize and verify a cost-effective, catalyst supported on cerium oxide that either stabilizes ionic conductivity in the presence of hydrogen sulfide and/or is highly sulfur-resistant. After thorough computational analysis, it was concluded that the platinum-copper skin catalyst was the most cost-effective, sulfur-resistant catalyst. Experimental synthesis of copper, platinum, and platinum-copper skin catalysts supported on cerium oxide was verified. Further experimentation must be performed to establish the platinum-copper skin catalyst supported on cerium oxide operational affects on the SOFC system in a sulfur environment.
Page Count
222
Department or Program
Department of Mechanical and Materials Engineering
Year Degree Awarded
2010
Copyright
Copyright 2010, all rights reserved. This open access ETD is published by Wright State University and OhioLINK.