Document Type
Article
Publication Date
10-2017
Abstract
Occupational noise frequently occurs in the work environment in military intelligence, surveillance, and reconnaissance operations. This impacts cognitive performance by acting as a stressor, potentially interfering with the analysts’ decision-making process. We investigated the effects of different noise stimuli on analysts’ performance and workload in anomaly detection by simulating a noisy work environment. We utilized functional near-infrared spectroscopy (fNIRS) to quantify oxy-hemoglobin (HbO) and deoxy-hemoglobin concentration changes in the prefrontal cortex (PFC), as well as behavioral measures, which include eye tracking, reaction time, and accuracy rate. We hypothesized that noisy environments would have a negative effect on the participant in terms of anomaly detection performance due to the increase in workload, which would be reflected by an increase in PFC activity. We found that HbO for some of the channels analyzed were significantly different across noise types ( p < 0.05 ). Our results also indicated that HbO activation for short-intermittent noise stimuli was greater in the PFC compared to long-intermittent noises. These approaches using fNIRS in conjunction with an understanding of the impact on human analysts in anomaly detection could potentially lead to better performance by optimizing work environments.
Repository Citation
Gabbard, R.,
Fendley, M. E.,
Dar, I. A.,
Warren, R.,
& Kashou, N. H.
(2017). Utilizing Functional Near-infrared Spectroscopy for Prediction of Cognitive Workload in Noisy Work Environments. Neurophotonics, 4 (4), 041406.
https://corescholar.libraries.wright.edu/bie/135
DOI
10.1117/1.NPh.4.4.041406
Comments
Copyright 2017 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.