Different Requirements for Conserved Post-Transcriptional Regulators in Planarian Regeneration and Stem Cell Maintenance

Document Type

Article

Publication Date

5-15-2010

Abstract

Planarian regeneration depends on the presence and precise regulation of pluripotent adult somatic stem cells named neoblasts, which differentiate to replace cells of any missing tissue. A characteristic feature of neoblasts is the presence of large perinuclear nonmembranous organelles named “chromatoid bodies”, which are comparable to ribonucleoprotein structures found in germ cells of organisms across different phyla. In order to better understand regulation of gene expression in neoblasts, and potentially the function and composition of chromatoid bodies, we characterized homologues to known germ and soma ribonucleoprotein granule components from other organisms and analyzed their function during regeneration of the planarian Dugesia japonica. Expression in neoblasts was detected for 49 of 55 analyzed genes, highlighting the prevalence of post-transcriptional regulation in planarian stem cells. RNAi-mediated knockdown of two factors [ago-2 and bruli] lead to loss of neoblasts, and consequently loss of regeneration, corroborating with results previously reported for a bruli ortholog in the planarian Schmidtea mediterranea (Guo et al., 2006). Conversely, depletion mRNA turnover factors [edc-4 or upf-1], exoribonucleases [xrn-1 or xrn-2], or DEAD box RNA helicases [Djcbc-1 or vas-1] inhibited planarian regeneration, but did not reduce neoblast proliferation or abundance. We also found that depletion of cap-dependent translation initiation factors eIF-3A or eIF-2A interrupted cell cycle progression outside the M-phase of mitosis. Our results show that a set of post-transcriptional regulators is required to maintain the stem cell identity in neoblasts, while another facilitates proper differentiation. We propose that planarian neoblasts maintain pluripotency by employing mechanisms of post-transcriptional regulation exhibited in germ cells and early development of most metazoans.

DOI

10.1016/j.ydbio.2010.02.037


Share

COinS