Document Type

Article

Publication Date

2015

Abstract

California’s central coast differs from many agricultural areas in the U.S., which feature large tracts of monoculture production fields and relatively simple landscapes. Known as the nation’s salad bowl, and producing up to 90% of U.S. production of lettuces, broccoli and Brussels sprouts, this region is a mosaic of fresh vegetable fields, coastal meadow, chaparral shrubs, riparian and woodland habitat. We tested for relationships between the percent cover of crops, riparian and other natural landscape vegetation and the species richness of parasitic wasps and flies foraging in crops, such as broccoli, kale and cauliflower, and interpreted our results with respect to the decrease in natural habitat and increase in cropland cover prompted by a local microbial contamination event in 2006. Our key results are that: (1) as cropland cover in the landscape increased, fewer species of parasitoids were captured in the crop field, (2) parasitoid richness overall was positively associated with the amount of riparian and other natural vegetation in the surrounding 500m, (3) different groups of parasitoids were associated with unique types of natural vegetation, and (4) parasitism rates of sentinel cabbage aphid and cabbage looper pests were correlated with landscape vegetation features according to which parasitoids caused the mortality. Although individual species of parasitoids may thrive in landscapes that are predominantly short season crops, the robust associations found in this study across specialist and generalist parasitoids and different taxa (tachinid flies, ichneumon wasps, braconid wasps) shows that recent food safety practices targeting removal of natural vegetation around vegetable fields in an attempt to eliminate wildlife may harm natural enemy communities and reduce ecosystem services. We argue that enhancing biological diversity is a key goal for transforming agroecosystems for future productivity, sustainability and public health.

Comments

Funding from USDA-NRI grant 2005-55302-16345 to Letourneau and C. Shennan supported Dr. Bothwell-Allen’s dissertation research and this project, with added funds from UC Santa Cruz Faculty Research Grants to DKL, and 25 organic vegetable growers/cooperators made this study possible.

© 2015 Letourneau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI

10.12952/journal.elementa.000069


Share

COinS