Geographic Variation in a Facultative Mutualism: Consequences for Local Arthropod Composition and Diversity

Document Type


Publication Date



Geographic variation in the outcome of interspecific interactions may influence not only the evolutionary trajectories of species but also the structure of local communities. We investigated this community consequence of geographic variation for a facultative mutualism between ants and wild cotton (Gossypium thurberi). Ants consume wild cotton extrafloral nectar and can protect plants from herbivores. We chose three sites that differed in interaction outcome, including a mutualism (ants provided the greatest benefits to plant fitness and responded to manipulations of extrafloral nectar), a potential commensalism (ants increased plant fitness but were unresponsive to extrafloral nectar), and a neutral interaction (ants neither affected plant fitness nor responded to extrafloral nectar). At all sites, we manipulated ants and extrafloral nectar in a factorial design and monitored the abundance, diversity, and composition of other arthropods occurring on wild cotton plants. We predicted that the effects of ants and extrafloral nectar on arthropods would be largest in the location with the mutualism and weakest where the interaction was neutral. A non-metric multidimensional scaling analysis revealed that the presence of ants altered arthropod composition, but only at the two sites in which ants increased plant fitness. At the site with the mutualism, ants also suppressed detritivore/scavenger abundance and increased aphids. The presence of extrafloral nectar increased arthropod abundance where mutual benefits were the strongest, whereas both arthropod abundance and morphospecies richness declined with extrafloral nectar availability at the site with the weakest ant–plant interaction. Some responses were geographically invariable: total arthropod richness and evenness declined by approximately 20% on plants with ants, and extrafloral nectar reduced carnivore abundance when ants were excluded from plants. These results demonstrate that a facultative ant–plant mutualism can alter the composition of arthropod assemblages on plants and that these community-level consequences vary across the landscape.



Find in your library

Off-Campus WSU Users