Automated Cell-Type Classification and Death-Detection of Spinal Motoneurons
Document Type
Conference Proceeding
Publication Date
2-13-2019
Abstract
Spinal motoneurons (MNs) play a crucial role in movement control. Decoding the firing activity of spinal MNs could help in real-life challenges, such as enhancing the control of myoelectric prostheses and diagnosing neurodegenerative diseases. In this paper, we propose a machine learning approach to automatically classify MNs based on their firing activity. Applying the proposed approach to data from a MN computational model, the classification accuracy of all examined datasets exceeded 95%. We extended the approach to detecting the death of a given MN type using clustering validity index. Results indicated that 86% of the examined death-detection cases were detected accurately. These results demonstrate that the proposed approach is a successful step in automating neuronal cell-type classification.
Repository Citation
Gamal, M.,
Mousa, M.,
Eldawlatly, S.,
& Elbasiouny, S.
(2019). Automated Cell-Type Classification and Death-Detection of Spinal Motoneurons. 2018 9th Cairo International Biomedical Engineering Conference, CIBEC 2018 - Proceedings, 57-60.
https://corescholar.libraries.wright.edu/cosm_ncbp/7
DOI
10.1109/CIBEC.2018.8641824