Morphing Communications of Cyber-Physical Systems Towards Moving-Target Defense
Document Type
Conference Proceeding
Publication Date
1-1-2014
Abstract
Since the massive deployment of Cyber-Physical Systems (CPSs) calls for long-range and reliable communication services with manageable cost, it has been believed to be an inevitable trend to relay a significant portion of CPS traffic through existing networking infrastructures such as the Internet. Adversaries who have access to networking infrastructures can therefore eavesdrop network traffic and then perform traffic analysis attacks in order to identify CPS sessions and subsequently launch various attacks. As we can hardly prevent all adversaries from accessing network infrastructures, thwarting traffic analysis attacks becomes indispensable. Traffic morphing serves as an effective means towards this direction. In this paper, a novel traffic morphing algorithm, CPSMorph, is proposed to protect CPS sessions. CPSMorph maintains a number of network sessions whose distributions of inter-packet delays are statistically indistinguishable from those of typical network sessions. A CPS message will be sent through one of these sessions with assured satisfaction of its time constraint. CPSMorph strives to minimize the overhead by dynamically adjusting the morphing process. It is characterized by low complexity as well as high adaptivity to changing dynamics of CPS sessions. Experimental results have shown that CPSMorph can effectively performing traffic morphing for real-time CPS messages with moderate overhead. © 2014 IEEE.
Repository Citation
Li, Y.,
Dai, R.,
& Zhang, J.
(2014). Morphing Communications of Cyber-Physical Systems Towards Moving-Target Defense. 2014 IEEE International Conference on Communications, ICC 2014, 592-598.
https://corescholar.libraries.wright.edu/cse/541
DOI
10.1109/ICC.2014.6883383