Document Type

Conference Proceeding

Publication Date

7-1-2010

Abstract

The seminar centered around problems which arise in the context of machine learning in dynamic environments. Particular emphasis was put on a couple of specific questions in this context: how to represent and abstract knowledge appropriately to shape the problem of learning in a partially unknown and complex environment and how to combine statistical inference and abstract symbolic representations; how to infer from few data and how to deal with non i.i.d. data, model revision and life-long learning; how to come up with efficient strategies to control realistic environments for which exploration is costly, the dimensionality is high and data are sparse; how to deal with very large settings; and how to apply these models in challenging application areas such as robotics, computer vision, or the web.

Comments

Summary of the proceedings at the Learning Paradigms in Dynamic Environments Seminar, Dagstuhl, Germany, July 25-20, 2010.


Share

COinS